NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 14 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Yasuhiro Yamamoto; Yasuo Miyazaki – Journal of Experimental Education, 2025
Bayesian methods have been said to solve small sample problems in frequentist methods by reflecting prior knowledge in the prior distribution. However, there are dangers in strongly reflecting prior knowledge or situations where much prior knowledge cannot be used. In order to address the issue, in this article, we considered to apply two Bayesian…
Descriptors: Sample Size, Hierarchical Linear Modeling, Bayesian Statistics, Prior Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Yongyun Shin; Stephen W. Raudenbush – Grantee Submission, 2025
Consider the conventional multilevel model Y=C[gamma]+Zu+e where [gamma] represents fixed effects and (u,e) are multivariate normal random effects. The continuous outcomes Y and covariates C are fully observed with a subset Z of C. The parameters are [theta]=([gamma],var(u),var(e)). Dempster, Rubin and Tsutakawa (1981) framed the estimation as a…
Descriptors: Hierarchical Linear Modeling, Maximum Likelihood Statistics, Sampling, Error of Measurement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Han Du; Brian Keller; Egamaria Alacam; Craig Enders – Grantee Submission, 2023
In Bayesian statistics, the most widely used criteria of Bayesian model assessment and comparison are Deviance Information Criterion (DIC) and Watanabe-Akaike Information Criterion (WAIC). A multilevel mediation model is used as an illustrative example to compare different types of DIC and WAIC. More specifically, the study compares the…
Descriptors: Bayesian Statistics, Models, Comparative Analysis, Probability
Craig K. Enders – Grantee Submission, 2023
The year 2022 is the 20th anniversary of Joseph Schafer and John Graham's paper titled "Missing data: Our view of the state of the art," currently the most highly cited paper in the history of "Psychological Methods." Much has changed since 2002, as missing data methodologies have continually evolved and improved; the range of…
Descriptors: Data, Research, Theories, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Kohli, Nidhi; Peralta, Yadira; Zopluoglu, Cengiz; Davison, Mark L. – International Journal of Behavioral Development, 2018
Piecewise mixed-effects models are useful for analyzing longitudinal educational and psychological data sets to model segmented change over time. These models offer an attractive alternative to commonly used quadratic and higher-order polynomial models because the coefficients obtained from fitting the model have meaningful substantive…
Descriptors: Hierarchical Linear Modeling, Longitudinal Studies, Maximum Likelihood Statistics, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Bolin, Jocelyn H.; Finch, W. Holmes; Stenger, Rachel – Educational and Psychological Measurement, 2019
Multilevel data are a reality for many disciplines. Currently, although multiple options exist for the treatment of multilevel data, most disciplines strictly adhere to one method for multilevel data regardless of the specific research design circumstances. The purpose of this Monte Carlo simulation study is to compare several methods for the…
Descriptors: Hierarchical Linear Modeling, Computation, Statistical Analysis, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Boedeker, Peter – Practical Assessment, Research & Evaluation, 2017
Hierarchical linear modeling (HLM) is a useful tool when analyzing data collected from groups. There are many decisions to be made when constructing and estimating a model in HLM including which estimation technique to use. Three of the estimation techniques available when analyzing data with HLM are maximum likelihood, restricted maximum…
Descriptors: Hierarchical Linear Modeling, Maximum Likelihood Statistics, Bayesian Statistics, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Leckie, George – Journal of Educational and Behavioral Statistics, 2018
The traditional approach to estimating the consistency of school effects across subject areas and the stability of school effects across time is to fit separate value-added multilevel models to each subject or cohort and to correlate the resulting empirical Bayes predictions. We show that this gives biased correlations and these biases cannot be…
Descriptors: Value Added Models, Reliability, Statistical Bias, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Chung, Yeojin; Gelman, Andrew; Rabe-Hesketh, Sophia; Liu, Jingchen; Dorie, Vincent – Journal of Educational and Behavioral Statistics, 2015
When fitting hierarchical regression models, maximum likelihood (ML) estimation has computational (and, for some users, philosophical) advantages compared to full Bayesian inference, but when the number of groups is small, estimates of the covariance matrix (S) of group-level varying coefficients are often degenerate. One can do better, even from…
Descriptors: Regression (Statistics), Hierarchical Linear Modeling, Bayesian Statistics, Statistical Inference
Chung, Yeojin; Gelman, Andrew; Rabe-Hesketh, Sophia; Liu, Jingchen; Dorie, Vincent – Grantee Submission, 2015
When fitting hierarchical regression models, maximum likelihood (ML) estimation has computational (and, for some users, philosophical) advantages compared to full Bayesian inference, but when the number of groups is small, estimates of the covariance matrix [sigma] of group-level varying coefficients are often degenerate. One can do better, even…
Descriptors: Regression (Statistics), Hierarchical Linear Modeling, Bayesian Statistics, Statistical Inference
Martinkova, Patricia; Goldhaber, Dan – Center for Education Data & Research, 2015
Inter-rater reliability, commonly assessed by intra-class correlation coefficient ICC, is an important index for describing the extent to which there is consistency amongst two or more raters in assigned measures. In organizational research, the data structure is often hierarchical and designs deviate substantially from the ideal of a balanced…
Descriptors: Teacher Selection, Interrater Reliability, Public School Teachers, Hierarchical Linear Modeling
Peer reviewed Peer reviewed
Direct linkDirect link
McNeish, Daniel M. – Journal of Educational and Behavioral Statistics, 2016
Mixed-effects models (MEMs) and latent growth models (LGMs) are often considered interchangeable save the discipline-specific nomenclature. Software implementations of these models, however, are not interchangeable, particularly with small sample sizes. Restricted maximum likelihood estimation that mitigates small sample bias in MEMs has not been…
Descriptors: Models, Statistical Analysis, Hierarchical Linear Modeling, Sample Size
Peer reviewed Peer reviewed
PDF on ERIC Download full text
May, Henry – Society for Research on Educational Effectiveness, 2014
Interest in variation in program impacts--How big is it? What might explain it?--has inspired recent work on the analysis of data from multi-site experiments. One critical aspect of this problem involves the use of random or fixed effect estimates to visualize the distribution of impact estimates across a sample of sites. Unfortunately, unless the…
Descriptors: Educational Research, Program Effectiveness, Research Problems, Computation
Jeon, Minjeong – ProQuest LLC, 2012
Maximum likelihood (ML) estimation of generalized linear mixed models (GLMMs) is technically challenging because of the intractable likelihoods that involve high dimensional integrations over random effects. The problem is magnified when the random effects have a crossed design and thus the data cannot be reduced to small independent clusters. A…
Descriptors: Hierarchical Linear Modeling, Computation, Measurement, Maximum Likelihood Statistics