NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 194 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Michael Nagel; Lukas Fischer; Tim Pawlowski; Augustin Kelava – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Bayesian estimations of complex regression models with high-dimensional parameter spaces require advanced priors, capable of addressing both sparsity and multicollinearity in the data. The Dirichlet-horseshoe, a new prior distribution that combines and expands on the concepts of the regularized horseshoe and the Dirichlet-Laplace priors, is a…
Descriptors: Bayesian Statistics, Regression (Statistics), Computation, Statistical Distributions
Peer reviewed Peer reviewed
Direct linkDirect link
Yasuhiro Yamamoto; Yasuo Miyazaki – Journal of Experimental Education, 2025
Bayesian methods have been said to solve small sample problems in frequentist methods by reflecting prior knowledge in the prior distribution. However, there are dangers in strongly reflecting prior knowledge or situations where much prior knowledge cannot be used. In order to address the issue, in this article, we considered to apply two Bayesian…
Descriptors: Sample Size, Hierarchical Linear Modeling, Bayesian Statistics, Prior Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Van Lissa, Caspar J.; van Erp, Sara; Clapper, Eli-Boaz – Research Synthesis Methods, 2023
When meta-analyzing heterogeneous bodies of literature, meta-regression can be used to account for potentially relevant between-studies differences. A key challenge is that the number of candidate moderators is often high relative to the number of studies. This introduces risks of overfitting, spurious results, and model non-convergence. To…
Descriptors: Bayesian Statistics, Regression (Statistics), Maximum Likelihood Statistics, Meta Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Xu, Jun; Bauldry, Shawn G.; Fullerton, Andrew S. – Sociological Methods & Research, 2022
We first review existing literature on cumulative logit models along with various ways to test the parallel lines assumption. Building on the traditional frequentist framework, we introduce a method of Bayesian assessment of null values to provide an alternative way to examine the parallel lines assumption using highest density intervals and…
Descriptors: Bayesian Statistics, Evaluation Methods, Models, Intervals
Peer reviewed Peer reviewed
Direct linkDirect link
Lu Qin; Shishun Zhao; Wenlai Guo; Tiejun Tong; Ke Yang – Research Synthesis Methods, 2024
The application of network meta-analysis is becoming increasingly widespread, and for a successful implementation, it requires that the direct comparison result and the indirect comparison result should be consistent. Because of this, a proper detection of inconsistency is often a key issue in network meta-analysis as whether the results can be…
Descriptors: Meta Analysis, Network Analysis, Bayesian Statistics, Comparative Analysis
Sangbaek Park – ProQuest LLC, 2024
This dissertation used synthetic datasets, semi-synthetic datasets, and a real-world dataset from an educational intervention to compare the performance of 15 machine learning and multiple imputation methods to estimate the individual treatment effect (ITE). In addition, it examined the performance of five evaluation metrics that can be used to…
Descriptors: Artificial Intelligence, Computation, Evaluation Methods, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
John Deke; Mariel Finucane; Dan Thal – Society for Research on Educational Effectiveness, 2022
Background/Context: Methodological background: Meta-analysis typically depends on the assumption that true effects follow the normal distribution. While assuming normality of effect "estimates" is often supported by a central limit theorem, normality for the distribution of interventions' "true" effects is a computational…
Descriptors: Bayesian Statistics, Meta Analysis, Regression (Statistics), Research Design
Peer reviewed Peer reviewed
Direct linkDirect link
Jeff Coon; Paulina N. Silva; Alexander Etz; Barbara W. Sarnecka – Journal of Cognition and Development, 2025
Bayesian methods offer many advantages when applied to psychological research, yet they may seem esoteric to researchers who are accustomed to traditional methods. This paper aims to lower the barrier of entry for developmental psychologists who are interested in using Bayesian methods. We provide worked examples of how to analyze common study…
Descriptors: Developmental Psychology, Bayesian Statistics, Research Methodology, Psychological Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Jean-Paul Fox – Journal of Educational and Behavioral Statistics, 2025
Popular item response theory (IRT) models are considered complex, mainly due to the inclusion of a random factor variable (latent variable). The random factor variable represents the incidental parameter problem since the number of parameters increases when including data of new persons. Therefore, IRT models require a specific estimation method…
Descriptors: Sample Size, Item Response Theory, Accuracy, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Jihong Zhang; Jonathan Templin; Xinya Liang – Journal of Educational Measurement, 2024
Recently, Bayesian diagnostic classification modeling has been becoming popular in health psychology, education, and sociology. Typically information criteria are used for model selection when researchers want to choose the best model among alternative models. In Bayesian estimation, posterior predictive checking is a flexible Bayesian model…
Descriptors: Bayesian Statistics, Cognitive Measurement, Models, Classification
Du, Han; Enders, Craig; Keller, Brian; Bradbury, Thomas N.; Karney, Benjamin R. – Grantee Submission, 2022
Missing data are exceedingly common across a variety of disciplines, such as educational, social, and behavioral science areas. Missing not at random (MNAR) mechanism where missingness is related to unobserved data is widespread in real data and has detrimental consequence. However, the existing MNAR-based methods have potential problems such as…
Descriptors: Bayesian Statistics, Data Analysis, Computer Simulation, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Ben Kelcey; Fangxing Bai; Amota Ataneka; Yanli Xie; Kyle Cox – Society for Research on Educational Effectiveness, 2024
We develop a structural after measurement (SAM) method for structural equation models (SEMs) that accommodates missing data. The results show that the proposed SAM missing data estimator outperforms conventional full information (FI) estimators in terms of convergence, bias, and root-mean-square-error in small-to-moderate samples or large samples…
Descriptors: Structural Equation Models, Research Problems, Error of Measurement, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
James Ohisei Uanhoro – Structural Equation Modeling: A Multidisciplinary Journal, 2024
We present a method for Bayesian structural equation modeling of sample correlation matrices as correlation structures. The method transforms the sample correlation matrix to an unbounded vector using the matrix logarithm function. Bayesian inference about the unbounded vector is performed assuming a multivariate-normal likelihood, with a mean…
Descriptors: Bayesian Statistics, Structural Equation Models, Correlation, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
A. M. Sadek; Fahad Al-Muhlaki – Measurement: Interdisciplinary Research and Perspectives, 2024
In this study, the accuracy of the artificial neural network (ANN) was assessed considering the uncertainties associated with the randomness of the data and the lack of learning. The Monte-Carlo algorithm was applied to simulate the randomness of the input variables and evaluate the output distribution. It has been shown that under certain…
Descriptors: Monte Carlo Methods, Accuracy, Artificial Intelligence, Guidelines
Peer reviewed Peer reviewed
Direct linkDirect link
de Jong, Valentijn M. T.; Campbell, Harlan; Maxwell, Lauren; Jaenisch, Thomas; Gustafson, Paul; Debray, Thomas P. A. – Research Synthesis Methods, 2023
A common problem in the analysis of multiple data sources, including individual participant data meta-analysis (IPD-MA), is the misclassification of binary variables. Misclassification may lead to biased estimators of model parameters, even when the misclassification is entirely random. We aimed to develop statistical methods that facilitate…
Descriptors: Classification, Meta Analysis, Bayesian Statistics, Evaluation Methods
Previous Page | Next Page ยป
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  12  |  13