NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Practitioners1
Laws, Policies, & Programs
Assessments and Surveys
Patterns of Adaptive Learning…1
What Works Clearinghouse Rating
Showing 1 to 15 of 34 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Pankaj Chejara; Luis P. Prieto; Yannis Dimitriadis; Maria Jesus Rodriguez-Triana; Adolfo Ruiz-Calleja; Reet Kasepalu; Shashi Kant Shankar – Journal of Learning Analytics, 2024
Multimodal learning analytics (MMLA) research has shown the feasibility of building automated models of collaboration quality using artificial intelligence (AI) techniques (e.g., supervised machine learning (ML)), thus enabling the development of monitoring and guiding tools for computer-supported collaborative learning (CSCL). However, the…
Descriptors: Learning Analytics, Attribution Theory, Acoustics, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Karrie A. Shogren; Valerie L. Mazzotti; Tyler A. Hicks; Sheida K. Raley; Daria Gerasimova; Jesse R. Pace; Stephen M. Kwiatek; Darcy Fredrick; Jared H. Stewart-Ginsburg; Richard Chapman; Danielle Wysenski – Career Development and Transition for Exceptional Individuals, 2024
Promoting self-determination is essential to effective transition services and supports. The Goal Setting Challenge App (GSC App) was developed to deliver self-determination instruction via technology, building on the evidence-based Self-Determined Learning Model of Instruction (SDLMI). This article presents data on goal attainment outcomes for…
Descriptors: Goal Orientation, COVID-19, Pandemics, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Xing, Wanli; Li, Chenglu; Chen, Guanhua; Huang, Xudong; Chao, Jie; Massicotte, Joyce; Xie, Charles – Journal of Educational Computing Research, 2021
Integrating engineering design into K-12 curricula is increasingly important as engineering has been incorporated into many STEM education standards. However, the ill-structured and open-ended nature of engineering design makes it difficult for an instructor to keep track of the design processes of all students simultaneously and provide…
Descriptors: Engineering Education, Design, Feedback (Response), Student Evaluation
Peer reviewed Peer reviewed
Direct linkDirect link
Bárcena, M. J.; Garín, M. A.; Martín, A.; Tusell, F.; Unzueta, A. – Journal of Statistics Education, 2019
Teaching some concepts in statistics greatly benefits from individual practice with immediate feedback. In order to provide such practice to a large number of students we have written a simulator based on an historical event: the loss in May 22, 1968, and subsequent search for the nuclear submarine USS Scorpion. Students work on a simplified…
Descriptors: Computer Simulation, Computer Assisted Instruction, Teaching Methods, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Starns, Jeffrey J.; Cohen, Andrew L.; Bosco, Cara; Hirst, Jennifer – Applied Cognitive Psychology, 2019
We tested a method for solving Bayesian reasoning problems in terms of spatial relations as opposed to mathematical equations. Participants completed Bayesian problems in which they were given a prior probability and two conditional probabilities and were asked to report the posterior odds. After a pretraining phase in which participants completed…
Descriptors: Visualization, Bayesian Statistics, Problem Solving, Probability
Karrie A. Shogren; Valerie L. Mazzotti; Tyler A. Hicks; Sheida K. Raley; Daria Gerasimova; Jesse R. Pace; Stephen M. Kwiatek; Darcy Fredrick; Jared H. Stewart-Ginsburg; Richard Chapman; Danielle C. Wysenski – Grantee Submission, 2022
Promoting self-determination is essential to effective transition services and supports. The Goal Setting Challenge App (GSC App) was developed to deliver self-determination instruction via technology, building on the evidence-based Self-Determined Learning Model of Instruction (SDLMI). This paper presents data on goal attainment outcomes for…
Descriptors: Goal Orientation, COVID-19, Pandemics, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Loftus, Mary; Madden, Michael G. – Teaching in Higher Education, 2020
How do we teach and learn with our students about data literacy, at the same time as Biesta (2015) calls for an emphasis on 'subjectification' i.e. 'the coming into presence of unique individual beings'? (Good Education in an Age of Measurement: Ethics, Politics, Democracy. Routledge) Our response to these challenges and the datafication of higher…
Descriptors: Teaching Methods, Data Analysis, Literacy, Learning Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Evans, William S.; Cavanaugh, Robert; Quique, Yina; Boss, Emily; Starns, Jeffrey J.; Hula, William D. – Journal of Speech, Language, and Hearing Research, 2021
Purpose: The purpose of this study was to develop and pilot a novel treatment framework called "BEARS" (Balancing Effort, Accuracy, and Response Speed). People with aphasia (PWA) have been shown to maladaptively balance speed and accuracy during language tasks. BEARS is designed to train PWA to balance speed-accuracy trade-offs and…
Descriptors: Accuracy, Semantics, Aphasia, Reaction Time
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Wilson, Kevin H.; Karklin, Yan; Han, Bojian; Ekanadham, Chaitanya – International Educational Data Mining Society, 2016
Estimating student proficiency is an important task for computer based learning systems. We compare a family of IRT-based proficiency estimation methods to Deep Knowledge Tracing (DKT), a recently proposed recurrent neural network model with promising initial results. We evaluate how well each model predicts a student's future response given…
Descriptors: Item Response Theory, Bayesian Statistics, Computation, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Nam Ju; Belland, Brian R.; Walker, Andrew E. – Educational Psychology Review, 2018
Computer-based scaffolding plays a pivotal role in improving students' higher-order skills in the context of problem-based learning for Science, Technology, Engineering and Mathematics (STEM) education. The effectiveness of computer-based scaffolding has been demonstrated through traditional meta-analyses. However, traditional meta-analyses suffer…
Descriptors: Scaffolding (Teaching Technique), Computer Assisted Instruction, Problem Based Learning, STEM Education
Yasuda, Keiji; Kawashima, Hiroyuki; Hata, Yoko; Kimura, Hiroaki – International Association for Development of the Information Society, 2015
An adaptive learning system is proposed that incorporates a Bayesian network to efficiently gauge learners' understanding at the course-unit level. Also, learners receive content that is adapted to their measured level of understanding. The system works on an iPad via the Edmodo platform. A field experiment using the system in an elementary school…
Descriptors: Adaptive Testing, Bayesian Statistics, Networks, Computer Assisted Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Wynton, Sarah K. A.; Anglim, Jeromy – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2017
While researchers have often sought to understand the learning curve in terms of multiple component processes, few studies have measured and mathematically modeled these processes on a complex task. In particular, there remains a need to reconcile how abrupt changes in strategy use can co-occur with gradual changes in task completion time. Thus,…
Descriptors: Learning Strategies, Learning Processes, Bayesian Statistics, Computer Assisted Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Belland, Brian R.; Walker, Andrew E.; Kim, Nam Ju – Review of Educational Research, 2017
Computer-based scaffolding provides temporary support that enables students to participate in and become more proficient at complex skills like problem solving, argumentation, and evaluation. While meta-analyses have addressed between-subject differences on cognitive outcomes resulting from scaffolding, none has addressed within-subject gains.…
Descriptors: Bayesian Statistics, Meta Analysis, STEM Education, Computer Assisted Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Käser, Tanja; Busetto, Alberto Giovanni; Solenthaler, Barbara; Baschera, Gian-Marco; Kohn, Juliane; Kucian, Karin; von Aster, Michael; Gross, Markus – International Journal of Artificial Intelligence in Education, 2013
This study introduces a student model and control algorithm, optimizing mathematics learning in children. The adaptive system is integrated into a computer-based training system for enhancing numerical cognition aimed at children with developmental dyscalculia or difficulties in learning mathematics. The student model consists of a dynamic…
Descriptors: Mathematics Instruction, Children, Computer Assisted Instruction, Educational Technology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Aslan, Burak Galip; Öztürk, Özlem; Inceoglu, Mustafa Murat – Educational Sciences: Theory and Practice, 2014
Considering the increasing importance of adaptive approaches in CALL systems, this study implemented a machine learning based student modeling middleware with Bayesian networks. The profiling approach of the student modeling system is based on Felder and Silverman's Learning Styles Model and Felder and Soloman's Index of Learning Styles…
Descriptors: Foreign Countries, Undergraduate Students, Graduate Students, Cognitive Style
Previous Page | Next Page »
Pages: 1  |  2  |  3