NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 12 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Deon T. Benton; David Kamper; Rebecca M. Beaton; David M. Sobel – Developmental Science, 2024
Causal reasoning is a fundamental cognitive ability that enables individuals to learn about the complex interactions in the world around them. However, the mechanisms that underpin causal reasoning are not well understood. For example, it remains unresolved whether children's causal inferences are best explained by Bayesian inference or…
Descriptors: Preschool Children, Thinking Skills, Associative Learning, Abstract Reasoning
Peer reviewed Peer reviewed
Direct linkDirect link
Minju Kim; Adena Schachner – Developmental Science, 2025
Listening to music activates representations of movement and social agents. Why? We test whether causal reasoning plays a role, and find that from childhood, people can intuitively reason about how musical sounds were generated, inferring the events and agents that caused the sounds. In Experiment 1 (N = 120, pre-registered), 6-year-old children…
Descriptors: Causal Models, Abstract Reasoning, Thinking Skills, Music
Peer reviewed Peer reviewed
Direct linkDirect link
Verhaar, Erik; Medendorp, Wijbrand Pieter; Hunnius, Sabine; Stapel, Janny C. – Developmental Science, 2022
If cues from different sensory modalities share the same cause, their information can be integrated to improve perceptual precision. While it is well established that adults exploit sensory redundancy by integrating cues in a Bayes optimal fashion, whether children under 8 years of age combine sensory information in a similar fashion is still…
Descriptors: Bayesian Statistics, Causal Models, Statistical Inference, Visual Perception
Peer reviewed Peer reviewed
Direct linkDirect link
Mani, Nivedita; Schreiner, Melanie S.; Brase, Julia; Köhler, Katrin; Strassen, Katrin; Postin, Danilo; Schultze, Thomas – Developmental Science, 2021
Developmental research, like many fields, is plagued by low sample sizes and inconclusive findings. The problem is amplified by the difficulties associated with recruiting infant participants for research as well as the increased variability in infant responses. With sequential testing designs providing a viable alternative to paradigms facing…
Descriptors: Bayesian Statistics, Infants, Language Acquisition, Vocabulary
Peer reviewed Peer reviewed
Direct linkDirect link
Johnston, Angie M.; Johnson, Samuel G. B.; Koven, Marissa L.; Keil, Frank C. – Developmental Science, 2017
Like scientists, children seek ways to explain causal systems in the world. But are children scientists in the strict Bayesian tradition of maximizing posterior probability? Or do they attend to other explanatory considerations, as laypeople and scientists--such as Einstein--do? Four experiments support the latter possibility. In particular, we…
Descriptors: Young Children, Thinking Skills, Inferences, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Piantadosi, Steven T.; Kidd, Celeste; Aslin, Richard – Developmental Science, 2014
Studies of infant looking times over the past 50 years have provided profound insights about cognitive development, but their dependent measures and analytic techniques are quite limited. In the context of infants' attention to discrete sequential events, we show how a Bayesian data analysis approach can be combined with a rational cognitive…
Descriptors: Infants, Eye Movements, Infant Behavior, Cognitive Development
Peer reviewed Peer reviewed
Direct linkDirect link
Balas, Benjamin – Developmental Science, 2012
During the first year of life, infants' face recognition abilities are subject to "perceptual narrowing", the end result of which is that observers lose the ability to distinguish previously discriminable faces (e.g. other-race faces) from one another. Perceptual narrowing has been reported for faces of different species and different races, in…
Descriptors: Infants, Recognition (Psychology), Human Body, Visual Perception
Peer reviewed Peer reviewed
Direct linkDirect link
Hamlin, J. Kiley; Ullman, Tomer; Tenenbaum, Josh; Goodman, Noah; Baker, Chris – Developmental Science, 2013
Evaluating individuals based on their pro- and anti-social behaviors is fundamental to successful human interaction. Recent research suggests that even preverbal infants engage in social evaluation; however, it remains an open question whether infants' judgments are driven uniquely by an analysis of the mental states that motivate others' helpful…
Descriptors: Infants, Social Cognition, Bayesian Statistics, Infant Behavior
Peer reviewed Peer reviewed
Direct linkDirect link
Frank, Michael C.; Slemmer, Jonathan A.; Marcus, Gary F.; Johnson, Scott P. – Developmental Science, 2009
By 7 months of age, infants are able to learn rules based on the abstract relationships between stimuli ( Marcus et al., 1999 ), but they are better able to do so when exposed to speech than to some other classes of stimuli. In the current experiments we ask whether multimodal stimulus information will aid younger infants in identifying abstract…
Descriptors: Cues, Infants, Experiments, Learning Modalities
Peer reviewed Peer reviewed
Direct linkDirect link
Xu, Fei; Tenenbaum, Joshua B. – Developmental Science, 2007
We report a new study testing our proposal that word learning may be best explained as an approximate form of Bayesian inference (Xu & Tenenbaum, in press). Children are capable of learning word meanings across a wide range of communicative contexts. In different contexts, learners may encounter different sampling processes generating the examples…
Descriptors: Semantics, Bayesian Statistics, Sampling, Inferences
Peer reviewed Peer reviewed
Direct linkDirect link
Shultz, Thomas R. – Developmental Science, 2007
This commentary reviews five articles that apply Bayesian ideas to psychological development, some with psychology experiments, some with computational modeling, and some with both experiments and modeling. The reviewed work extends the current Bayesian revolution into tasks often studied in children, such as causal learning and word learning, and…
Descriptors: Psychology, Bayesian Statistics, Experiments, Modeling (Psychology)
Peer reviewed Peer reviewed
Direct linkDirect link
Kemp, Charles; Perfors, Amy; Tenenbaum, Joshua B. – Developmental Science, 2007
Inductive learning is impossible without overhypotheses, or constraints on the hypotheses considered by the learner. Some of these overhypotheses must be innate, but we suggest that hierarchical Bayesian models can help to explain how the rest are acquired. To illustrate this claim, we develop models that acquire two kinds of…
Descriptors: Bayesian Statistics, Logical Thinking, Models, Statistical Analysis