Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 0 |
| Since 2017 (last 10 years) | 0 |
| Since 2007 (last 20 years) | 5 |
Descriptor
| Bayesian Statistics | 5 |
| Computation | 3 |
| Item Response Theory | 3 |
| Ability | 2 |
| Comparative Analysis | 2 |
| Maximum Likelihood Statistics | 2 |
| Models | 2 |
| Test Bias | 2 |
| Test Items | 2 |
| Difficulty Level | 1 |
| Regression (Statistics) | 1 |
| More ▼ | |
Author
| Magis, David | 5 |
| Raiche, Gilles | 3 |
| De Boeck, Paul | 2 |
| Tuerlinckx, Francis | 2 |
| Beland, Sebastien | 1 |
| Frederickx, Sofie | 1 |
Publication Type
| Journal Articles | 5 |
| Reports - Research | 3 |
| Reports - Descriptive | 2 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Magis, David; Tuerlinckx, Francis; De Boeck, Paul – Journal of Educational and Behavioral Statistics, 2015
This article proposes a novel approach to detect differential item functioning (DIF) among dichotomously scored items. Unlike standard DIF methods that perform an item-by-item analysis, we propose the "LR lasso DIF method": logistic regression (LR) model is formulated for all item responses. The model contains item-specific intercepts,…
Descriptors: Test Bias, Test Items, Regression (Statistics), Scores
Magis, David; Raiche, Gilles – Psychometrika, 2012
This paper focuses on two estimators of ability with logistic item response theory models: the Bayesian modal (BM) estimator and the weighted likelihood (WL) estimator. For the BM estimator, Jeffreys' prior distribution is considered, and the corresponding estimator is referred to as the Jeffreys modal (JM) estimator. It is established that under…
Descriptors: Item Response Theory, Computation, Bayesian Statistics, Models
Magis, David; Beland, Sebastien; Raiche, Gilles – Applied Psychological Measurement, 2011
In this study, the estimation of extremely large or extremely small proficiency levels, given the item parameters of a logistic item response model, is investigated. On one hand, the estimation of proficiency levels by maximum likelihood (ML), despite being asymptotically unbiased, may yield infinite estimates. On the other hand, with an…
Descriptors: Test Length, Computation, Item Response Theory, Maximum Likelihood Statistics
Magis, David; Raiche, Gilles – Applied Psychological Measurement, 2010
In this article the authors focus on the issue of the nonuniqueness of the maximum likelihood (ML) estimator of proficiency level in item response theory (with special attention to logistic models). The usual maximum a posteriori (MAP) method offers a good alternative within that framework; however, this article highlights some drawbacks of its…
Descriptors: Maximum Likelihood Statistics, Computation, Bayesian Statistics, Item Response Theory
Frederickx, Sofie; Tuerlinckx, Francis; De Boeck, Paul; Magis, David – Journal of Educational Measurement, 2010
In this paper we present a new methodology for detecting differential item functioning (DIF). We introduce a DIF model, called the random item mixture (RIM), that is based on a Rasch model with random item difficulties (besides the common random person abilities). In addition, a mixture model is assumed for the item difficulties such that the…
Descriptors: Test Bias, Models, Test Items, Difficulty Level

Peer reviewed
Direct link
