NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 16 to 30 of 200 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Wesley Morris; Langdon Holmes; Joon Suh Choi; Scott Crossley – International Journal of Artificial Intelligence in Education, 2025
Recent developments in the field of artificial intelligence allow for improved performance in the automated assessment of extended response items in mathematics, potentially allowing for the scoring of these items cheaply and at scale. This study details the grand prize-winning approach to developing large language models (LLMs) to automatically…
Descriptors: Automation, Computer Assisted Testing, Mathematics Tests, Scoring
Peer reviewed Peer reviewed
Direct linkDirect link
Alex Goslen; Yeo Jin Kim; Jonathan Rowe; James Lester – International Journal of Artificial Intelligence in Education, 2025
The development of large language models offers new possibilities for enhancing adaptive scaffolding of student learning in game-based learning environments. In this work, we present a novel framework for automatic plan generation that utilizes text-based representations of students' actions within a game-based learning environment, Crystal…
Descriptors: Artificial Intelligence, Natural Language Processing, Technology Uses in Education, Game Based Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Hosnia M. M. Ahmed; Shaymaa E. Sorour – Education and Information Technologies, 2024
Evaluating the quality of university exam papers is crucial for universities seeking institutional and program accreditation. Currently, exam papers are assessed manually, a process that can be tedious, lengthy, and in some cases, inconsistent. This is often due to the focus on assessing only the formal specifications of exam papers. This study…
Descriptors: Higher Education, Artificial Intelligence, Writing Evaluation, Natural Language Processing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Abdulkadir Kara; Eda Saka Simsek; Serkan Yildirim – Asian Journal of Distance Education, 2024
Evaluation is an essential component of the learning process when discerning learning situations. Assessing natural language responses, like short answers, takes time and effort. Artificial intelligence and natural language processing advancements have led to more studies on automatically grading short answers. In this review, we systematically…
Descriptors: Automation, Natural Language Processing, Artificial Intelligence, Grading
Peer reviewed Peer reviewed
Direct linkDirect link
Putnikovic, Marko; Jovanovic, Jelena – IEEE Transactions on Learning Technologies, 2023
Automatic grading of short answers is an important task in computer-assisted assessment (CAA). Recently, embeddings, as semantic-rich textual representations, have been increasingly used to represent short answers and predict the grade. Despite the recent trend of applying embeddings in automatic short answer grading (ASAG), there are no…
Descriptors: Automation, Computer Assisted Testing, Grading, Natural Language Processing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Abubakir Siedahmed; Jaclyn Ocumpaugh; Zelda Ferris; Dinesh Kodwani; Eamon Worden; Neil Heffernan – International Educational Data Mining Society, 2025
Recent advances in AI have opened the door for the automated scoring of open-ended math problems, which were previously much more difficult to assess at scale. However, we know that biases still remain in some of these algorithms. For example, recent research on the automated scoring of student essays has shown that certain varieties of English…
Descriptors: Artificial Intelligence, Automation, Scoring, Mathematics Tests
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yucheng Chu; Hang Li; Kaiqi Yang; Harry Shomer; Yasemin Copur-Gencturk; Leonora Kaldaras; Kevin Haudek; Joseph Krajcik; Namsoo Shin; Hui Liu; Jiliang Tang – International Educational Data Mining Society, 2025
Open-text responses provide researchers and educators with rich, nuanced insights that multiple-choice questions cannot capture. When reliably assessed, such responses have the potential to enhance teaching and learning. However, scaling and consistently capturing these nuances remain significant challenges, limiting the widespread use of…
Descriptors: Grading, Automation, Artificial Intelligence, Natural Language Processing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Abdulkadir Kara; Zeynep Avinç Kara; Serkan Yildirim – International Journal of Assessment Tools in Education, 2025
In measurement and evaluation processes, natural language responses are often avoided due to time, workload, and reliability concerns. However, the increasing popularity of automatic short-answer grading studies for natural language responses means such answers can now be measured more quickly and reliably. This study aims to build models for…
Descriptors: Scoring, Automation, Artificial Intelligence, Natural Language Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Mohsin Murtaza; Chi-Tsun Cheng; Mohammad Fard; John Zeleznikow – International Journal of Artificial Intelligence in Education, 2025
As modern vehicles continue to integrate increasingly sophisticated Advanced Driver Assistance Systems (ADAS) and Autonomous Vehicles (AV) functions, conventional user manuals may no longer be the most effective medium for conveying knowledge to drivers. This research analysed conventional, paper and video-based instructional methods versus a…
Descriptors: Educational Change, Driver Education, Motor Vehicles, Natural Language Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Zaki, Nazar; Turaev, Sherzod; Shuaib, Khaled; Krishnan, Anusuya; Mohamed, Elfadil – Education and Information Technologies, 2023
Quality control and assurance plays a fundamental role within higher education contexts. One means by which quality control can be performed is by mapping the course learning outcomes (CLOs) to the program learning outcomes (PLO). This paper describes a system by which this mapping process can be automated and validated. The proposed AI-based…
Descriptors: Program Evaluation, Outcomes of Education, Natural Language Processing, Higher Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yucheng Chu; Peng He; Hang Li; Haoyu Han; Kaiqi Yang; Yu Xue; Tingting Li; Yasemin Copur-Gencturk; Joseph Krajcik; Jiliang Tang – International Educational Data Mining Society, 2025
Short answer assessment is a vital component of science education, allowing evaluation of students' complex three-dimensional understanding. Large language models (LLMs) that possess human-like ability in linguistic tasks are increasingly popular in assisting human graders to reduce their workload. However, LLMs' limitations in domain knowledge…
Descriptors: Artificial Intelligence, Science Education, Technology Uses in Education, Natural Language Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Xiaoyan Shi – International Journal of Web-Based Learning and Teaching Technologies, 2024
In order to avoid students' negative learning mood, contemporary teachers are required to abandon the application of spoon-feeding teaching method in English classroom teaching, adopt micro-class teaching method, highlight the teaching characteristics of being close to the people, and create an efficient, short, and special teaching space to meet…
Descriptors: Video Technology, Natural Language Processing, Captions, Technology Uses in Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Naima Debbar – International Journal of Contemporary Educational Research, 2024
Intelligent systems of essay grading constitute important tools for educational technologies. They can significantly replace the manual scoring efforts and provide instructional feedback as well. These systems typically include two main parts: a feature extractor and an automatic grading model. The latter is generally based on computational and…
Descriptors: Test Scoring Machines, Computer Uses in Education, Artificial Intelligence, Essay Tests
Stefan Ruseti; Ionut Paraschiv; Mihai Dascalu; Danielle S. McNamara – Grantee Submission, 2024
Automated Essay Scoring (AES) is a well-studied problem in Natural Language Processing applied in education. Solutions vary from handcrafted linguistic features to large Transformer-based models, implying a significant effort in feature extraction and model implementation. We introduce a novel Automated Machine Learning (AutoML) pipeline…
Descriptors: Computer Assisted Testing, Scoring, Automation, Essays
Peer reviewed Peer reviewed
Direct linkDirect link
Stefan Ruseti; Ionut Paraschiv; Mihai Dascalu; Danielle S. McNamara – International Journal of Artificial Intelligence in Education, 2024
Automated Essay Scoring (AES) is a well-studied problem in Natural Language Processing applied in education. Solutions vary from handcrafted linguistic features to large Transformer-based models, implying a significant effort in feature extraction and model implementation. We introduce a novel Automated Machine Learning (AutoML) pipeline…
Descriptors: Computer Assisted Testing, Scoring, Automation, Essays
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  14