Publication Date
| In 2026 | 0 |
| Since 2025 | 13 |
| Since 2022 (last 5 years) | 33 |
| Since 2017 (last 10 years) | 38 |
| Since 2007 (last 20 years) | 44 |
Descriptor
| Automation | 44 |
| Natural Language Processing | 44 |
| Technology Uses in Education | 44 |
| Artificial Intelligence | 32 |
| Feedback (Response) | 19 |
| Essays | 18 |
| Scoring | 16 |
| Educational Technology | 15 |
| Writing (Composition) | 9 |
| Foreign Countries | 8 |
| Intelligent Tutoring Systems | 8 |
| More ▼ | |
Source
Author
| McNamara, Danielle S. | 6 |
| Allen, Laura K. | 4 |
| Crossley, Scott A. | 4 |
| Snow, Erica L. | 3 |
| Hang Li | 2 |
| Jacovina, Matthew E. | 2 |
| Jiliang Tang | 2 |
| Joseph Krajcik | 2 |
| Kaiqi Yang | 2 |
| Perret, Cecile A. | 2 |
| Yasemin Copur-Gencturk | 2 |
| More ▼ | |
Publication Type
Education Level
Audience
| Policymakers | 1 |
| Teachers | 1 |
Location
| Arizona (Phoenix) | 2 |
| China | 2 |
| Hong Kong | 2 |
| Asia | 1 |
| Australia | 1 |
| Brazil | 1 |
| Canada | 1 |
| Connecticut | 1 |
| Denmark | 1 |
| Egypt | 1 |
| Estonia | 1 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
| Gates MacGinitie Reading Tests | 3 |
| International English… | 1 |
| Writing Apprehension Test | 1 |
What Works Clearinghouse Rating
Michel C. Desmarais; Arman Bakhtiari; Ovide Bertrand Kuichua Kandem; Samira Chiny Folefack Temfack; Chahé Nerguizian – International Educational Data Mining Society, 2025
We propose a novel method for automated short answer grading (ASAG) designed for practical use in real-world settings. The method combines LLM embedding similarity with a nonlinear regression function, enabling accurate prediction from a small number of expert-graded responses. In this use case, a grader manually assesses a few responses, while…
Descriptors: Grading, Automation, Artificial Intelligence, Natural Language Processing
Ngoc My Bui; Jessie S. Barrot – Education and Information Technologies, 2025
With the generative artificial intelligence (AI) tool's remarkable capabilities in understanding and generating meaningful content, intriguing questions have been raised about its potential as an automated essay scoring (AES) system. One such tool is ChatGPT, which is capable of scoring any written work based on predefined criteria. However,…
Descriptors: Artificial Intelligence, Natural Language Processing, Technology Uses in Education, Automation
Alex Goslen; Yeo Jin Kim; Jonathan Rowe; James Lester – International Journal of Artificial Intelligence in Education, 2025
The development of large language models offers new possibilities for enhancing adaptive scaffolding of student learning in game-based learning environments. In this work, we present a novel framework for automatic plan generation that utilizes text-based representations of students' actions within a game-based learning environment, Crystal…
Descriptors: Artificial Intelligence, Natural Language Processing, Technology Uses in Education, Game Based Learning
Abdulkadir Kara; Eda Saka Simsek; Serkan Yildirim – Asian Journal of Distance Education, 2024
Evaluation is an essential component of the learning process when discerning learning situations. Assessing natural language responses, like short answers, takes time and effort. Artificial intelligence and natural language processing advancements have led to more studies on automatically grading short answers. In this review, we systematically…
Descriptors: Automation, Natural Language Processing, Artificial Intelligence, Grading
Yucheng Chu; Hang Li; Kaiqi Yang; Harry Shomer; Yasemin Copur-Gencturk; Leonora Kaldaras; Kevin Haudek; Joseph Krajcik; Namsoo Shin; Hui Liu; Jiliang Tang – International Educational Data Mining Society, 2025
Open-text responses provide researchers and educators with rich, nuanced insights that multiple-choice questions cannot capture. When reliably assessed, such responses have the potential to enhance teaching and learning. However, scaling and consistently capturing these nuances remain significant challenges, limiting the widespread use of…
Descriptors: Grading, Automation, Artificial Intelligence, Natural Language Processing
Yucheng Chu; Peng He; Hang Li; Haoyu Han; Kaiqi Yang; Yu Xue; Tingting Li; Yasemin Copur-Gencturk; Joseph Krajcik; Jiliang Tang – International Educational Data Mining Society, 2025
Short answer assessment is a vital component of science education, allowing evaluation of students' complex three-dimensional understanding. Large language models (LLMs) that possess human-like ability in linguistic tasks are increasingly popular in assisting human graders to reduce their workload. However, LLMs' limitations in domain knowledge…
Descriptors: Artificial Intelligence, Science Education, Technology Uses in Education, Natural Language Processing
Xiaoyan Shi – International Journal of Web-Based Learning and Teaching Technologies, 2024
In order to avoid students' negative learning mood, contemporary teachers are required to abandon the application of spoon-feeding teaching method in English classroom teaching, adopt micro-class teaching method, highlight the teaching characteristics of being close to the people, and create an efficient, short, and special teaching space to meet…
Descriptors: Video Technology, Natural Language Processing, Captions, Technology Uses in Education
Jie Yang; Ehsan Latif; Yuze He; Xiaoming Zhai – Journal of Science Education and Technology, 2025
The development of explanations for scientific phenomena is crucial in science assessment. However, the scoring of students' written explanations is a challenging and resource-intensive process. Large language models (LLMs) have demonstrated the potential to address these challenges, particularly when the explanations are written in English, an…
Descriptors: Artificial Intelligence, Technology Uses in Education, Automation, Scoring
Soomaiya Hamid; Narmeen Zakaria Bawany – Interactive Learning Environments, 2024
E-learning is the process of sharing knowledge out of the traditional classrooms through different online tools using internet. The availability and use of these tools are not easy for every student. Many institutions gather e-learning feedback to know the problems of students to improve their systems. In e-learning systems, typically a high…
Descriptors: Feedback (Response), Electronic Learning, Automation, Classification
Leveraging Large Language Models to Generate Course-Specific Semantically Annotated Learning Objects
Dominic Lohr; Marc Berges; Abhishek Chugh; Michael Kohlhase; Dennis Müller – Journal of Computer Assisted Learning, 2025
Background: Over the past few decades, the process and methodology of automatic question generation (AQG) have undergone significant transformations. Recent progress in generative natural language models has opened up new potential in the generation of educational content. Objectives: This paper explores the potential of large language models…
Descriptors: Resource Units, Semantics, Automation, Questioning Techniques
Hyeongdon Moon; Richard Lee Davis; Seyed Parsa Neshaei; Pierre Dillenbourg – International Educational Data Mining Society, 2025
Knowledge tracing models have enabled a range of intelligent tutoring systems to provide feedback to students. However, existing methods for knowledge tracing in learning sciences are predominantly reliant on statistical data and instructor-defined knowledge components, making it challenging to integrate AI-generated educational content with…
Descriptors: Artificial Intelligence, Natural Language Processing, Automation, Information Management
Mickie De Wet; Margarita Oja Da Silva; René Bohnsack – Innovations in Education and Teaching International, 2025
This study explores the use of large language models (LLMs) to generate feedback on essay-type assignments in Higher Education. Drawing on a seminal feedback framework, it examines the pedagogical and psychological effectiveness of LLM-generated feedback across three cohorts of MBA, MSc, and undergraduate students. Methods included linguistic…
Descriptors: Higher Education, College Students, Artificial Intelligence, Writing Evaluation
Tobias Kohn – Journal of Computer Assisted Learning, 2025
Background: The recent advent of powerful, exam-passing large language models (LLMs) in public awareness has led to concerns over students cheating, but has also given rise to calls for including or even focusing education on LLMs. There is a perceived urgency to react immediately, as well as claims that AI-based reforms of education will lead to…
Descriptors: Artificial Intelligence, Natural Language Processing, Technology Uses in Education, Usability
Sghaier Guizani; Tehseen Mazhar; Tariq Shahzad; Wasim Ahmad; Afsha Bibi; Habib Hamam – Discover Education, 2025
Artificial intelligence-driven Chatbots, especially large language models (LLMs) like GPT-4, represent significant progress in digital education. These models excel in mimicking human-like text and transforming learning and teaching methods. This study examines the development, application, and impact of LLMs in education. It highlights their role…
Descriptors: Artificial Intelligence, Natural Language Processing, Technology Uses in Education, Automation
Miguel Ángel Escotet – Prospects, 2024
Artificial Intelligence is a fast-evolving technology with enormous potential for education, higher education, and learning. AI can also negatively impact how societies and their citizens engage ethically with these generated, still-unexplored tools. These technological breakthroughs present both opportunity and potential peril. The problem of any…
Descriptors: Futures (of Society), Artificial Intelligence, Technology Uses in Education, Higher Education

Peer reviewed
Direct link
