Publication Date
| In 2026 | 0 |
| Since 2025 | 3 |
| Since 2022 (last 5 years) | 7 |
| Since 2017 (last 10 years) | 14 |
| Since 2007 (last 20 years) | 20 |
Descriptor
| Automation | 20 |
| Intelligent Tutoring Systems | 20 |
| Natural Language Processing | 20 |
| Artificial Intelligence | 13 |
| Feedback (Response) | 12 |
| Educational Technology | 11 |
| Essays | 8 |
| Programming | 8 |
| Technology Uses in Education | 8 |
| Models | 7 |
| Scoring | 7 |
| More ▼ | |
Source
Author
Publication Type
| Reports - Research | 10 |
| Journal Articles | 9 |
| Collected Works - Proceedings | 5 |
| Speeches/Meeting Papers | 4 |
| Reports - Descriptive | 3 |
| Reports - Evaluative | 2 |
Education Level
Audience
Location
| Arizona (Phoenix) | 2 |
| Brazil | 2 |
| Netherlands | 2 |
| Australia | 1 |
| China | 1 |
| Czech Republic | 1 |
| Israel | 1 |
| Massachusetts | 1 |
| Mississippi | 1 |
| North Carolina | 1 |
| Pennsylvania | 1 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
| Gates MacGinitie Reading Tests | 1 |
| Massachusetts Comprehensive… | 1 |
| Writing Apprehension Test | 1 |
What Works Clearinghouse Rating
Smitha S. Kumar; Michael A. Lones; Manuel Maarek; Hind Zantout – ACM Transactions on Computing Education, 2025
Programming demands a variety of cognitive skills, and mastering these competencies is essential for success in computer science education. The importance of formative feedback is well acknowledged in programming education, and thus, a diverse range of techniques has been proposed to generate and enhance formative feedback for programming…
Descriptors: Automation, Computer Science Education, Programming, Feedback (Response)
Hyeongdon Moon; Richard Lee Davis; Seyed Parsa Neshaei; Pierre Dillenbourg – International Educational Data Mining Society, 2025
Knowledge tracing models have enabled a range of intelligent tutoring systems to provide feedback to students. However, existing methods for knowledge tracing in learning sciences are predominantly reliant on statistical data and instructor-defined knowledge components, making it challenging to integrate AI-generated educational content with…
Descriptors: Artificial Intelligence, Natural Language Processing, Automation, Information Management
Olaperi Okuboyejo; Sigrid Ewert; Ian Sanders – ACM Transactions on Computing Education, 2025
Regular expressions (REs) are often taught to undergraduate computer science majors in the Formal Languages and Automata (FLA) course; they are widely used to implement different software functionalities such as search mechanisms and data validation in diverse fields. Despite their importance, the difficulty of REs has been asserted many times in…
Descriptors: Automation, Feedback (Response), Error Patterns, Error Correction
Laura K. Allen; Arthur C. Grasser; Danielle S. McNamara – Grantee Submission, 2023
Assessments of natural language can provide vast information about individuals' thoughts and cognitive process, but they often rely on time-intensive human scoring, deterring researchers from collecting these sources of data. Natural language processing (NLP) gives researchers the opportunity to implement automated textual analyses across a…
Descriptors: Psychological Studies, Natural Language Processing, Automation, Research Methodology
Miguel Ángel Escotet – Prospects, 2024
Artificial Intelligence is a fast-evolving technology with enormous potential for education, higher education, and learning. AI can also negatively impact how societies and their citizens engage ethically with these generated, still-unexplored tools. These technological breakthroughs present both opportunity and potential peril. The problem of any…
Descriptors: Futures (of Society), Artificial Intelligence, Technology Uses in Education, Higher Education
Kochmar, Ekaterina; Vu, Dung Do; Belfer, Robert; Gupta, Varun; Serban, Iulian Vlad; Pineau, Joelle – International Journal of Artificial Intelligence in Education, 2022
Intelligent tutoring systems (ITS) have been shown to be highly effective at promoting learning as compared to other computer-based instructional approaches. However, many ITS rely heavily on expert design and hand-crafted rules. This makes them difficult to build and transfer across domains and limits their potential efficacy. In this paper, we…
Descriptors: Intelligent Tutoring Systems, Automation, Feedback (Response), Dialogs (Language)
Gillani, Nabeel; Eynon, Rebecca; Chiabaut, Catherine; Finkel, Kelsey – Educational Technology & Society, 2023
Recent advances in Artificial Intelligence (AI) have sparked renewed interest in its potential to improve education. However, AI is a loose umbrella term that refers to a collection of methods, capabilities, and limitations--many of which are often not explicitly articulated by researchers, education technology companies, or other AI developers.…
Descriptors: Artificial Intelligence, Technology Uses in Education, Educational Technology, Educational Benefits
Cai, Zhiqiang; Hu, Xiangen; Graesser, Arthur C. – Grantee Submission, 2019
Conversational Intelligent Tutoring Systems (ITSs) are expensive to develop. While simple online courseware could be easily authored by teachers, the authoring of conversational ITSs usually involves a team of experts with different expertise, including domain experts, linguists, instruction designers, programmers, artists, computer scientists,…
Descriptors: Programming, Intelligent Tutoring Systems, Courseware, Educational Technology
Sano, Makoto; Baker, Doris Luft; Collazo, Marlen; Le, Nancy; Kamata, Akihito – Grantee Submission, 2020
Purpose: Explore how different automated scoring (AS) models score reliably the expressive language and vocabulary knowledge in depth of young second grade Latino English learners. Design/methodology/approach: Analyze a total of 13,471 English utterances from 217 Latino English learners with random forest, end-to-end memory networks, long…
Descriptors: English Language Learners, Hispanic American Students, Elementary School Students, Grade 2
Liu, Ming; Rus, Vasile; Liu, Li – IEEE Transactions on Learning Technologies, 2017
Question generation is an emerging research area of artificial intelligence in education. Question authoring tools are important in educational technologies, e.g., intelligent tutoring systems, as well as in dialogue systems. Approaches to generate factual questions, i.e., questions that have concrete answers, mainly make use of the syntactical…
Descriptors: Chinese, Questioning Techniques, Automation, Natural Language Processing
Allen, Laura K.; Likens, Aaron D.; McNamara, Danielle S. – Grantee Submission, 2018
The assessment of argumentative writing generally includes analyses of the specific linguistic and rhetorical features contained in the individual essays produced by students. However, researchers have recently proposed that an individual's ability to flexibly adapt the linguistic properties of their writing may more accurately capture their…
Descriptors: Writing (Composition), Persuasive Discourse, Essays, Language Usage
Crossley, Scott; Allen, Laura K.; Snow, Erica L.; McNamara, Danielle S. – Grantee Submission, 2015
This study investigates a new approach to automatically assessing essay quality that combines traditional approaches based on assessing textual features with new approaches that measure student attributes such as demographic information, standardized test scores, and survey results. The results demonstrate that combining both text features and…
Descriptors: Automation, Scoring, Essays, Evaluation Methods
McNamara, Danielle S.; Crossley, Scott A.; Roscoe, Rod – Grantee Submission, 2013
The Writing Pal is an intelligent tutoring system that provides writing strategy training. A large part of its artificial intelligence resides in the natural language processing algorithms to assess essay quality and guide feedback to students. Because writing is often highly nuanced and subjective, the development of these algorithms must…
Descriptors: Intelligent Tutoring Systems, Natural Language Processing, Writing Instruction, Feedback (Response)
Cope, Bill; Kalantzis, Mary – Open Review of Educational Research, 2015
This article sets out to explore a shift in the sources of evidence-of-learning in the era of networked computing. One of the key features of recent developments has been popularly characterized as "big data". We begin by examining, in general terms, the frame of reference of contemporary debates on machine intelligence and the role of…
Descriptors: Data Analysis, Evidence, Computer Uses in Education, Artificial Intelligence
Crossley, Scott A.; Varner, Laura K.; Roscoe, Rod D.; McNamara, Danielle S. – Grantee Submission, 2013
We present an evaluation of the Writing Pal (W-Pal) intelligent tutoring system (ITS) and the W-Pal automated writing evaluation (AWE) system through the use of computational indices related to text cohesion. Sixty-four students participated in this study. Each student was assigned to either the W-Pal ITS condition or the W-Pal AWE condition. The…
Descriptors: Intelligent Tutoring Systems, Automation, Writing Evaluation, Writing Assignments
Previous Page | Next Page »
Pages: 1 | 2
Peer reviewed
Direct link
