NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Location
Brazil1
India1
Laws, Policies, & Programs
Assessments and Surveys
Test of English as a Foreign…1
What Works Clearinghouse Rating
Showing 1 to 15 of 18 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Michel C. Desmarais; Arman Bakhtiari; Ovide Bertrand Kuichua Kandem; Samira Chiny Folefack Temfack; Chahé Nerguizian – International Educational Data Mining Society, 2025
We propose a novel method for automated short answer grading (ASAG) designed for practical use in real-world settings. The method combines LLM embedding similarity with a nonlinear regression function, enabling accurate prediction from a small number of expert-graded responses. In this use case, a grader manually assesses a few responses, while…
Descriptors: Grading, Automation, Artificial Intelligence, Natural Language Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Smitha S. Kumar; Michael A. Lones; Manuel Maarek; Hind Zantout – ACM Transactions on Computing Education, 2025
Programming demands a variety of cognitive skills, and mastering these competencies is essential for success in computer science education. The importance of formative feedback is well acknowledged in programming education, and thus, a diverse range of techniques has been proposed to generate and enhance formative feedback for programming…
Descriptors: Automation, Computer Science Education, Programming, Feedback (Response)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Abdulkadir Kara; Eda Saka Simsek; Serkan Yildirim – Asian Journal of Distance Education, 2024
Evaluation is an essential component of the learning process when discerning learning situations. Assessing natural language responses, like short answers, takes time and effort. Artificial intelligence and natural language processing advancements have led to more studies on automatically grading short answers. In this review, we systematically…
Descriptors: Automation, Natural Language Processing, Artificial Intelligence, Grading
Peer reviewed Peer reviewed
Direct linkDirect link
Putnikovic, Marko; Jovanovic, Jelena – IEEE Transactions on Learning Technologies, 2023
Automatic grading of short answers is an important task in computer-assisted assessment (CAA). Recently, embeddings, as semantic-rich textual representations, have been increasingly used to represent short answers and predict the grade. Despite the recent trend of applying embeddings in automatic short answer grading (ASAG), there are no…
Descriptors: Automation, Computer Assisted Testing, Grading, Natural Language Processing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Abubakir Siedahmed; Jaclyn Ocumpaugh; Zelda Ferris; Dinesh Kodwani; Eamon Worden; Neil Heffernan – International Educational Data Mining Society, 2025
Recent advances in AI have opened the door for the automated scoring of open-ended math problems, which were previously much more difficult to assess at scale. However, we know that biases still remain in some of these algorithms. For example, recent research on the automated scoring of student essays has shown that certain varieties of English…
Descriptors: Artificial Intelligence, Automation, Scoring, Mathematics Tests
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yucheng Chu; Hang Li; Kaiqi Yang; Harry Shomer; Yasemin Copur-Gencturk; Leonora Kaldaras; Kevin Haudek; Joseph Krajcik; Namsoo Shin; Hui Liu; Jiliang Tang – International Educational Data Mining Society, 2025
Open-text responses provide researchers and educators with rich, nuanced insights that multiple-choice questions cannot capture. When reliably assessed, such responses have the potential to enhance teaching and learning. However, scaling and consistently capturing these nuances remain significant challenges, limiting the widespread use of…
Descriptors: Grading, Automation, Artificial Intelligence, Natural Language Processing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yucheng Chu; Peng He; Hang Li; Haoyu Han; Kaiqi Yang; Yu Xue; Tingting Li; Yasemin Copur-Gencturk; Joseph Krajcik; Jiliang Tang – International Educational Data Mining Society, 2025
Short answer assessment is a vital component of science education, allowing evaluation of students' complex three-dimensional understanding. Large language models (LLMs) that possess human-like ability in linguistic tasks are increasingly popular in assisting human graders to reduce their workload. However, LLMs' limitations in domain knowledge…
Descriptors: Artificial Intelligence, Science Education, Technology Uses in Education, Natural Language Processing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Naima Debbar – International Journal of Contemporary Educational Research, 2024
Intelligent systems of essay grading constitute important tools for educational technologies. They can significantly replace the manual scoring efforts and provide instructional feedback as well. These systems typically include two main parts: a feature extractor and an automatic grading model. The latter is generally based on computational and…
Descriptors: Test Scoring Machines, Computer Uses in Education, Artificial Intelligence, Essay Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Lixiang Yan; Lele Sha; Linxuan Zhao; Yuheng Li; Roberto Martinez-Maldonado; Guanliang Chen; Xinyu Li; Yueqiao Jin; Dragan Gaševic – British Journal of Educational Technology, 2024
Educational technology innovations leveraging large language models (LLMs) have shown the potential to automate the laborious process of generating and analysing textual content. While various innovations have been developed to automate a range of educational tasks (eg, question generation, feedback provision, and essay grading), there are…
Descriptors: Educational Technology, Artificial Intelligence, Natural Language Processing, Educational Innovation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Condor, Aubrey; Litster, Max; Pardos, Zachary – International Educational Data Mining Society, 2021
We explore how different components of an Automatic Short Answer Grading (ASAG) model affect the model's ability to generalize to questions outside of those used for training. For supervised automatic grading models, human ratings are primarily used as ground truth labels. Producing such ratings can be resource heavy, as subject matter experts…
Descriptors: Automation, Grading, Test Items, Generalization
Binglin Chen – ProQuest LLC, 2022
Assessment is a key component of education. Routine grading of students' work, however, is time consuming. Automating the grading process allows instructors to spend more of their time helping their students learn and engaging their students with more open-ended, creative activities. One way to automate grading is through computer-based…
Descriptors: College Students, STEM Education, Student Evaluation, Grading
Cai, Zhiqiang; Hu, Xiangen; Graesser, Arthur C. – Grantee Submission, 2019
Conversational Intelligent Tutoring Systems (ITSs) are expensive to develop. While simple online courseware could be easily authored by teachers, the authoring of conversational ITSs usually involves a team of experts with different expertise, including domain experts, linguists, instruction designers, programmers, artists, computer scientists,…
Descriptors: Programming, Intelligent Tutoring Systems, Courseware, Educational Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Lu, Owen H. T.; Huang, Anna Y. Q.; Tsai, Danny C. L.; Yang, Stephen J. H. – Educational Technology & Society, 2021
Human-guided machine learning can improve computing intelligence, and it can accurately assist humans in various tasks. In education research, artificial intelligence (AI) is applicable in many situations, such as predicting students' learning paths and strategies. In this study, we explore the benefits of repetitive practice of short-answer…
Descriptors: Test Items, Artificial Intelligence, Test Construction, Student Evaluation
Peer reviewed Peer reviewed
Direct linkDirect link
Vittorini, Pierpaolo; Menini, Stefano; Tonelli, Sara – International Journal of Artificial Intelligence in Education, 2021
Massive open online courses (MOOCs) provide hundreds of students with teaching materials, assessment tools, and collaborative instruments. The assessment activity, in particular, is demanding in terms of both time and effort; thus, the use of artificial intelligence can be useful to address and reduce the time and effort required. This paper…
Descriptors: Artificial Intelligence, Formative Evaluation, Summative Evaluation, Data
Peer reviewed Peer reviewed
Direct linkDirect link
Burrows, Steven; Gurevych, Iryna; Stein, Benno – International Journal of Artificial Intelligence in Education, 2015
Automatic short answer grading (ASAG) is the task of assessing short natural language responses to objective questions using computational methods. The active research in this field has increased enormously of late with over 80 papers fitting a definition of ASAG. However, the past efforts have generally been ad-hoc and non-comparable until…
Descriptors: Grading, Automation, Natural Language Processing, Computation
Previous Page | Next Page »
Pages: 1  |  2