NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 124 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Christopher Adamson – New Directions for Teaching and Learning, 2025
This chapter responds to the recent crisis surrounding developments in large language models (LLMs) and generative AI with a relational view of education informed by the emerging world-centered approach to education and a synthesis of personalist character formation with feminist care ethics. It proposes that the instinct to manage student use of…
Descriptors: Artificial Intelligence, Natural Language Processing, Automation, Feminism
Peer reviewed Peer reviewed
Direct linkDirect link
Po-Chun Huang; Ying-Hong Chan; Ching-Yu Yang; Hung-Yuan Chen; Yao-Chung Fan – IEEE Transactions on Learning Technologies, 2024
Question generation (QG) task plays a crucial role in adaptive learning. While significant QG performance advancements are reported, the existing QG studies are still far from practical usage. One point that needs strengthening is to consider the generation of question group, which remains untouched. For forming a question group, intrafactors…
Descriptors: Automation, Test Items, Computer Assisted Testing, Test Construction
Peer reviewed Peer reviewed
Direct linkDirect link
Kangkang Li; Chengyang Qian; Xianmin Yang – Education and Information Technologies, 2025
In learnersourcing, automatic evaluation of student-generated content (SGC) is significant as it streamlines the evaluation process, provides timely feedback, and enhances the objectivity of grading, ultimately supporting more effective and efficient learning outcomes. However, the methods of aggregating students' evaluations of SGC face the…
Descriptors: Student Developed Materials, Educational Quality, Automation, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Harpreet Auby; Namrata Shivagunde; Vijeta Deshpande; Anna Rumshisky; Milo D. Koretsky – Journal of Engineering Education, 2025
Background: Analyzing student short-answer written justifications to conceptually challenging questions has proven helpful to understand student thinking and improve conceptual understanding. However, qualitative analyses are limited by the burden of analyzing large amounts of text. Purpose: We apply dense and sparse Large Language Models (LLMs)…
Descriptors: Student Evaluation, Thinking Skills, Test Format, Cognitive Processes
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zifeng Liu; Wanli Xing; Chenglu Li; Fan Zhang; Hai Li; Victor Minces – Journal of Learning Analytics, 2025
Creativity is a vital skill in science, technology, engineering, and mathematics (STEM)-related education, fostering innovation and problem-solving. Traditionally, creativity assessments relied on human evaluations, such as the consensual assessment technique (CAT), which are resource-intensive, time-consuming, and often subjective. Recent…
Descriptors: Creativity, Elementary School Students, Artificial Intelligence, Man Machine Systems
Peer reviewed Peer reviewed
Direct linkDirect link
Ngoc My Bui; Jessie S. Barrot – Education and Information Technologies, 2025
With the generative artificial intelligence (AI) tool's remarkable capabilities in understanding and generating meaningful content, intriguing questions have been raised about its potential as an automated essay scoring (AES) system. One such tool is ChatGPT, which is capable of scoring any written work based on predefined criteria. However,…
Descriptors: Artificial Intelligence, Natural Language Processing, Technology Uses in Education, Automation
Peer reviewed Peer reviewed
Direct linkDirect link
Wesley Morris; Langdon Holmes; Joon Suh Choi; Scott Crossley – International Journal of Artificial Intelligence in Education, 2025
Recent developments in the field of artificial intelligence allow for improved performance in the automated assessment of extended response items in mathematics, potentially allowing for the scoring of these items cheaply and at scale. This study details the grand prize-winning approach to developing large language models (LLMs) to automatically…
Descriptors: Automation, Computer Assisted Testing, Mathematics Tests, Scoring
Peer reviewed Peer reviewed
Direct linkDirect link
Alex Goslen; Yeo Jin Kim; Jonathan Rowe; James Lester – International Journal of Artificial Intelligence in Education, 2025
The development of large language models offers new possibilities for enhancing adaptive scaffolding of student learning in game-based learning environments. In this work, we present a novel framework for automatic plan generation that utilizes text-based representations of students' actions within a game-based learning environment, Crystal…
Descriptors: Artificial Intelligence, Natural Language Processing, Technology Uses in Education, Game Based Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Smitha S. Kumar; Michael A. Lones; Manuel Maarek; Hind Zantout – ACM Transactions on Computing Education, 2025
Programming demands a variety of cognitive skills, and mastering these competencies is essential for success in computer science education. The importance of formative feedback is well acknowledged in programming education, and thus, a diverse range of techniques has been proposed to generate and enhance formative feedback for programming…
Descriptors: Automation, Computer Science Education, Programming, Feedback (Response)
Peer reviewed Peer reviewed
Direct linkDirect link
Hosnia M. M. Ahmed; Shaymaa E. Sorour – Education and Information Technologies, 2024
Evaluating the quality of university exam papers is crucial for universities seeking institutional and program accreditation. Currently, exam papers are assessed manually, a process that can be tedious, lengthy, and in some cases, inconsistent. This is often due to the focus on assessing only the formal specifications of exam papers. This study…
Descriptors: Higher Education, Artificial Intelligence, Writing Evaluation, Natural Language Processing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Abdulkadir Kara; Eda Saka Simsek; Serkan Yildirim – Asian Journal of Distance Education, 2024
Evaluation is an essential component of the learning process when discerning learning situations. Assessing natural language responses, like short answers, takes time and effort. Artificial intelligence and natural language processing advancements have led to more studies on automatically grading short answers. In this review, we systematically…
Descriptors: Automation, Natural Language Processing, Artificial Intelligence, Grading
Peer reviewed Peer reviewed
Direct linkDirect link
Putnikovic, Marko; Jovanovic, Jelena – IEEE Transactions on Learning Technologies, 2023
Automatic grading of short answers is an important task in computer-assisted assessment (CAA). Recently, embeddings, as semantic-rich textual representations, have been increasingly used to represent short answers and predict the grade. Despite the recent trend of applying embeddings in automatic short answer grading (ASAG), there are no…
Descriptors: Automation, Computer Assisted Testing, Grading, Natural Language Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Mohsin Murtaza; Chi-Tsun Cheng; Mohammad Fard; John Zeleznikow – International Journal of Artificial Intelligence in Education, 2025
As modern vehicles continue to integrate increasingly sophisticated Advanced Driver Assistance Systems (ADAS) and Autonomous Vehicles (AV) functions, conventional user manuals may no longer be the most effective medium for conveying knowledge to drivers. This research analysed conventional, paper and video-based instructional methods versus a…
Descriptors: Educational Change, Driver Education, Motor Vehicles, Natural Language Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Zaki, Nazar; Turaev, Sherzod; Shuaib, Khaled; Krishnan, Anusuya; Mohamed, Elfadil – Education and Information Technologies, 2023
Quality control and assurance plays a fundamental role within higher education contexts. One means by which quality control can be performed is by mapping the course learning outcomes (CLOs) to the program learning outcomes (PLO). This paper describes a system by which this mapping process can be automated and validated. The proposed AI-based…
Descriptors: Program Evaluation, Outcomes of Education, Natural Language Processing, Higher Education
Peer reviewed Peer reviewed
Direct linkDirect link
Xiaoyan Shi – International Journal of Web-Based Learning and Teaching Technologies, 2024
In order to avoid students' negative learning mood, contemporary teachers are required to abandon the application of spoon-feeding teaching method in English classroom teaching, adopt micro-class teaching method, highlight the teaching characteristics of being close to the people, and create an efficient, short, and special teaching space to meet…
Descriptors: Video Technology, Natural Language Processing, Captions, Technology Uses in Education
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9