NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 871 to 885 of 930 results Save | Export
Hamilton, Clovia; Swart, William; Stokes, Gerald M. – Online Submission, 2021
We address the issue of consumer privacy against the backdrop of the national priority of maintaining global leadership in artificial intelligence, the ongoing research in Artificial Cognitive Assistants, and the explosive growth in the development and application of Voice Activated Personal Assistants (VAPAs) such as Alexa and Siri, spurred on by…
Descriptors: Rating Scales, Ethics, Compliance (Legal), Artificial Intelligence
Graesser, Arthur C. – Grantee Submission, 2016
AutoTutor helps students learn by holding a conversation in natural language. AutoTutor is adaptive to the learners' actions, verbal contributions, and in some systems their emotions. Many of AutoTutor's conversation patterns simulate human tutoring, but other patterns implement ideal pedagogies that open the door to computer tutors eclipsing…
Descriptors: Intelligent Tutoring Systems, Artificial Intelligence, Communication Strategies, Dialogs (Language)
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Ming; Rus, Vasile; Liu, Li – IEEE Transactions on Learning Technologies, 2017
Question generation is an emerging research area of artificial intelligence in education. Question authoring tools are important in educational technologies, e.g., intelligent tutoring systems, as well as in dialogue systems. Approaches to generate factual questions, i.e., questions that have concrete answers, mainly make use of the syntactical…
Descriptors: Chinese, Questioning Techniques, Automation, Natural Language Processing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kopp, Kristopher J.; Johnson, Amy M.; Crossley, Scott A.; McNamara, Danielle S. – Grantee Submission, 2017
An NLP algorithm was developed to assess question quality to inform feedback on questions generated by students within iSTART (an intelligent tutoring system that teaches reading strategies). A corpus of 4575 questions was coded using a four-level taxonomy. NLP indices were calculated for each question and machine learning was used to predict…
Descriptors: Reading Comprehension, Reading Instruction, Intelligent Tutoring Systems, Reading Strategies
Stefan Ruseti; Mihai Dascalu; Amy M. Johnson; Renu Balyan; Kristopher J. Kopp; Danielle S. McNamara – Grantee Submission, 2018
This study assesses the extent to which machine learning techniques can be used to predict question quality. An algorithm based on textual complexity indices was previously developed to assess question quality to provide feedback on questions generated by students within iSTART (an intelligent tutoring system that teaches reading strategies). In…
Descriptors: Questioning Techniques, Artificial Intelligence, Networks, Classification
Fulbright, Ron – Association Supporting Computer Users in Education, 2017
The ASCUE conference is celebrating its 50th anniversary this year making me wonder if we will be able to attend the 100th conference in 2067. By then, many of us may very well be biologically deceased. However, there is technology currently in development making it possible for a digital version of ourselves to attend not only the 2067 conference…
Descriptors: Conferences (Gatherings), Attendance, Death, Artificial Intelligence
Balyan, Renu; Crossley, Scott A.; Brown, William, III; Karter, Andrew J.; McNamara, Danielle S.; Liu, Jennifer Y.; Lyles, Courtney R.; Schillinger, Dean – Grantee Submission, 2019
Limited health literacy is a barrier to optimal healthcare delivery and outcomes. Current measures requiring patients to self-report limitations are time-consuming and may be considered intrusive by some. This makes widespread classification of patient health literacy challenging. The objective of this study was to develop and validate…
Descriptors: Patients, Literacy, Health Services, Profiles
Kelly, Sean; Olney, Andrew M.; Donnelly, Patrick; Nystrand, Martin; D'Mello, Sidney K. – Educational Researcher, 2018
Analyzing the quality of classroom talk is central to educational research and improvement efforts. In particular, the presence of authentic teacher questions, where answers are not predetermined by the teacher, helps constitute and serves as a marker of productive classroom discourse. Further, authentic questions can be cultivated to improve…
Descriptors: Middle School Students, Natural Language Processing, Artificial Intelligence, Teaching Methods
Snyder, Robin M. – Association Supporting Computer Users in Education, 2015
The field of topic modeling has become increasingly important over the past few years. Topic modeling is an unsupervised machine learning way to organize text (or image or DNA, etc.) information such that related pieces of text can be identified. This paper/session will present/discuss the current state of topic modeling, why it is important, and…
Descriptors: Natural Language Processing, Artificial Intelligence, Man Machine Systems, Computational Linguistics
Peer reviewed Peer reviewed
Direct linkDirect link
Beigman Klebanov, Beata; Burstein, Jill; Harackiewicz, Judith M.; Priniski, Stacy J.; Mulholland, Matthew – International Journal of Artificial Intelligence in Education, 2017
The integration of subject matter learning with reading and writing skills takes place in multiple ways. Students learn to read, interpret, and write texts in the discipline-relevant genres. However, writing can be used not only for the purposes of practice in professional communication, but also as an opportunity to reflect on the learned…
Descriptors: STEM Education, Content Area Writing, Writing Instruction, Intervention
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Knight, Simon; Littleton, Karen – Journal of Learning Analytics, 2015
This paper provides a novel, conceptually driven stance on the state of the contemporary analytic challenges faced in the treatment of dialogue as a form of data across on- and offline sites of learning. In prior research, preliminary steps have been taken to detect occurrences of such dialogue using automated analysis techniques. Such advances…
Descriptors: Dialogs (Language), Data Collection, Data Analysis, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Kolodny, Oren; Lotem, Arnon; Edelman, Shimon – Cognitive Science, 2015
We introduce a set of biologically and computationally motivated design choices for modeling the learning of language, or of other types of sequential, hierarchically structured experience and behavior, and describe an implemented system that conforms to these choices and is capable of unsupervised learning from raw natural-language corpora. Given…
Descriptors: Grammar, Natural Language Processing, Computer Mediated Communication, Graphs
Peer reviewed Peer reviewed
Direct linkDirect link
Malik, Kaleem Razzaq; Mir, Rizwan Riaz; Farhan, Muhammad; Rafiq, Tariq; Aslam, Muhammad – EURASIA Journal of Mathematics, Science & Technology Education, 2017
Research in era of data representation to contribute and improve key data policy involving the assessment of learning, training and English language competency. Students are required to communicate in English with high level impact using language and influence. The electronic technology works to assess students' questions positively enabling…
Descriptors: Knowledge Management, Computer Assisted Testing, Student Evaluation, Search Strategies
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Tierney, Patrick J. – International Review of Research in Open and Distance Learning, 2012
This paper introduces a method of extending natural language-based processing of qualitative data analysis with the use of a very quantitative tool--graph theory. It is not an attempt to convert qualitative research to a positivist approach with a mathematical black box, nor is it a "graphical solution". Rather, it is a method to help qualitative…
Descriptors: Natural Language Processing, Qualitative Research, Data Analysis, Graphs
Benjamin D. Nye; Arthur C. Graesser; Xiangen Hu – Grantee Submission, 2014
AutoTutor is a natural language tutoring system that has produced learning gains across multiple domains (e.g., computer literacy, physics, critical thinking). In this paper, we review the development, key research findings, and systems that have evolved from AutoTutor. First, the rationale for developing AutoTutor is outlined and the advantages…
Descriptors: Intelligent Tutoring Systems, Natural Language Processing, Computer Software, Artificial Intelligence
Pages: 1  |  ...  |  52  |  53  |  54  |  55  |  56  |  57  |  58  |  59  |  60  |  61  |  62