NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Denis Shchepakin; Sreecharan Sankaranarayanan; Dawn Zimmaro – International Educational Data Mining Society, 2024
Bayesian Knowledge Tracing (BKT) is a probabilistic model of a learner's state of mastery for a knowledge component. The learner's state is a "hidden" binary variable updated based on the correctness of the learner's responses to questions corresponding to that knowledge component. The parameters used for this update are inferred/learned…
Descriptors: Algorithms, Bayesian Statistics, Probability, Artificial Intelligence
Matthew Jannetti; Amy Carroll-Scott; Erikka Gilliam; Irene Headen; Maggie Beverly; Félice Lê-Scherban – Field Methods, 2023
Place-based initiatives often use resident surveys to inform and evaluate interventions. Sampling based on well-defined sampling frames is important but challenging for initiatives that target subpopulations. Databases that enumerate total population counts can produce overinclusive sampling frames, resulting in costly outreach to ineligible…
Descriptors: Sampling, Probability, Definitions, Prediction
Tamara Broderick; Andrew Gelman; Rachael Meager; Anna L. Smith; Tian Zheng – Grantee Submission, 2022
Probabilistic machine learning increasingly informs critical decisions in medicine, economics, politics, and beyond. To aid the development of trust in these decisions, we develop a taxonomy delineating where trust in an analysis can break down: (1) in the translation of real-world goals to goals on a particular set of training data, (2) in the…
Descriptors: Taxonomy, Trust (Psychology), Algorithms, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Li, Xiao; Xu, Hanchen; Zhang, Jinming; Chang, Hua-hua – Journal of Educational and Behavioral Statistics, 2023
The adaptive learning problem concerns how to create an individualized learning plan (also referred to as a learning policy) that chooses the most appropriate learning materials based on a learner's latent traits. In this article, we study an important yet less-addressed adaptive learning problem--one that assumes continuous latent traits.…
Descriptors: Learning Processes, Models, Algorithms, Individualized Instruction
Gratch, Jonathan; DeJong, Gerald – 1992
In machine learning there is considerable interest in techniques which improve planning ability. Initial investigations have identified a wide variety of techniques to address this issue. Progress has been hampered by the utility problem, a basic tradeoff between the benefit of learned knowledge and the cost to locate and apply relevant knowledge.…
Descriptors: Algorithms, Artificial Intelligence, Comparative Analysis, Computer System Design