Publication Date
| In 2026 | 0 |
| Since 2025 | 3 |
| Since 2022 (last 5 years) | 37 |
| Since 2017 (last 10 years) | 51 |
| Since 2007 (last 20 years) | 56 |
Descriptor
| Artificial Intelligence | 56 |
| Prediction | 56 |
| Natural Language Processing | 49 |
| Models | 28 |
| Feedback (Response) | 16 |
| Classification | 14 |
| Computer Software | 14 |
| Technology Uses in Education | 14 |
| Accuracy | 13 |
| Automation | 13 |
| Educational Technology | 13 |
| More ▼ | |
Source
Author
| Danielle S. McNamara | 6 |
| Mihai Dascalu | 6 |
| McNamara, Danielle S. | 4 |
| Stefan Ruseti | 4 |
| Micah Watanabe | 3 |
| Allen, Laura K. | 2 |
| Barnes, Tiffany, Ed. | 2 |
| Dascalu, Mihai | 2 |
| Desmarais, Michel, Ed. | 2 |
| Guanliang Chen | 2 |
| Ionut Paraschiv | 2 |
| More ▼ | |
Publication Type
| Reports - Research | 34 |
| Journal Articles | 28 |
| Speeches/Meeting Papers | 10 |
| Dissertations/Theses -… | 9 |
| Collected Works - Proceedings | 7 |
| Information Analyses | 4 |
| Reports - Evaluative | 2 |
Education Level
Audience
Location
| Australia | 3 |
| Brazil | 3 |
| Netherlands | 3 |
| China | 2 |
| Germany | 2 |
| Israel | 2 |
| Pennsylvania | 2 |
| Spain | 2 |
| United Kingdom | 2 |
| United States | 2 |
| Uruguay | 2 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
| Flesch Kincaid Grade Level… | 1 |
| Massachusetts Comprehensive… | 1 |
What Works Clearinghouse Rating
Teo Susnjak – International Journal of Artificial Intelligence in Education, 2024
A significant body of recent research in the field of Learning Analytics has focused on leveraging machine learning approaches for predicting at-risk students in order to initiate timely interventions and thereby elevate retention and completion rates. The overarching feature of the majority of these research studies has been on the science of…
Descriptors: Prediction, Learning Analytics, Artificial Intelligence, At Risk Students
Seyed Parsa Neshaei; Richard Lee Davis; Paola Mejia-Domenzain; Tanya Nazaretsky; Tanja Käser – International Educational Data Mining Society, 2025
Deep learning models for text classification have been increasingly used in intelligent tutoring systems and educational writing assistants. However, the scarcity of data in many educational settings, as well as certain imbalances in counts among the annotated labels of educational datasets, limits the generalizability and expressiveness of…
Descriptors: Artificial Intelligence, Classification, Natural Language Processing, Technology Uses in Education
Samah AlKhuzaey; Floriana Grasso; Terry R. Payne; Valentina Tamma – International Journal of Artificial Intelligence in Education, 2024
Designing and constructing pedagogical tests that contain items (i.e. questions) which measure various types of skills for different levels of students equitably is a challenging task. Teachers and item writers alike need to ensure that the quality of assessment materials is consistent, if student evaluations are to be objective and effective.…
Descriptors: Test Items, Test Construction, Difficulty Level, Prediction
Jionghao Lin; Eason Chen; Zifei Han; Ashish Gurung; Danielle R. Thomas; Wei Tan; Ngoc Dang Nguyen; Kenneth R. Koedinger – International Educational Data Mining Society, 2024
Automated explanatory feedback systems play a crucial role in facilitating learning for a large cohort of learners by offering feedback that incorporates explanations, significantly enhancing the learning process. However, delivering such explanatory feedback in real-time poses challenges, particularly when high classification accuracy for…
Descriptors: Artificial Intelligence, Man Machine Systems, Natural Language Processing, Feedback (Response)
Stefan Ruseti; Ionut Paraschiv; Mihai Dascalu; Danielle S. McNamara – Grantee Submission, 2024
Automated Essay Scoring (AES) is a well-studied problem in Natural Language Processing applied in education. Solutions vary from handcrafted linguistic features to large Transformer-based models, implying a significant effort in feature extraction and model implementation. We introduce a novel Automated Machine Learning (AutoML) pipeline…
Descriptors: Computer Assisted Testing, Scoring, Automation, Essays
Stefan Ruseti; Ionut Paraschiv; Mihai Dascalu; Danielle S. McNamara – International Journal of Artificial Intelligence in Education, 2024
Automated Essay Scoring (AES) is a well-studied problem in Natural Language Processing applied in education. Solutions vary from handcrafted linguistic features to large Transformer-based models, implying a significant effort in feature extraction and model implementation. We introduce a novel Automated Machine Learning (AutoML) pipeline…
Descriptors: Computer Assisted Testing, Scoring, Automation, Essays
Lixiang Yan; Lele Sha; Linxuan Zhao; Yuheng Li; Roberto Martinez-Maldonado; Guanliang Chen; Xinyu Li; Yueqiao Jin; Dragan Gaševic – British Journal of Educational Technology, 2024
Educational technology innovations leveraging large language models (LLMs) have shown the potential to automate the laborious process of generating and analysing textual content. While various innovations have been developed to automate a range of educational tasks (eg, question generation, feedback provision, and essay grading), there are…
Descriptors: Educational Technology, Artificial Intelligence, Natural Language Processing, Educational Innovation
Tal Waltzer; Celeste Pilegard; Gail D. Heyman – International Journal for Educational Integrity, 2024
The release of ChatGPT in 2022 has generated extensive speculation about how Artificial Intelligence (AI) will impact the capacity of institutions for higher learning to achieve their central missions of promoting learning and certifying knowledge. Our main questions were whether people could identify AI-generated text and whether factors such as…
Descriptors: Artificial Intelligence, Man Machine Systems, Natural Language Processing, College Students
Kotlyar, Igor; Sharifi, Tina; Fiksenbaum, Lisa – International Journal of Artificial Intelligence in Education, 2023
Teamwork skills are commonly evaluated by human assessors, which can be logistically challenging and resource intensive. Technological advancements provide an opportunity for a new assessment method -- virtual behavioural simulations with self-scoring algorithms. This study explores whether a rule-based algorithm can match human assessors at…
Descriptors: Algorithms, Undergraduate Students, Computer Simulation, Evaluation
Dragos-Georgian Corlatescu; Micah Watanabe; Stefan Ruseti; Mihai Dascalu; Danielle S. McNamara – Grantee Submission, 2024
Modeling reading comprehension processes is a critical task for Learning Analytics, as accurate models of the reading process can be used to match students to texts, identify appropriate interventions, and predict learning outcomes. This paper introduces an improved version of the Automated Model of Comprehension, namely version 4.0. AMoC has its…
Descriptors: Computer Software, Artificial Intelligence, Learning Analytics, Natural Language Processing
Sezer Kanbul; Idris Adamu; Yakubu Bala Mohammed – SAGE Open, 2024
This article presents a research investigation focusing on the effects of ChatGPT utilization on sustainable education and development. The study employed five machine learning (XGBoost, RF, SVM, GBDT, and ANN) models for predicting the impacts of ChatGPT usage in education, aiming at identifying the potential benefits of ChatGPT usage on…
Descriptors: Artificial Intelligence, Man Machine Systems, Natural Language Processing, Sustainable Development
Jiayi Zhang; Conrad Borchers; Vincent Aleven; Ryan S. Baker – International Educational Data Mining Society, 2024
Think-aloud protocols are a common method to study self-regulated learning (SRL) during learning by problem-solving. Previous studies have manually transcribed and coded students' verbalizations, labeling the presence or absence of SRL strategies and then examined these SRL codes in relation to learning. However, the coding process is difficult to…
Descriptors: Artificial Intelligence, Technology Uses in Education, Protocol Analysis, Self Management
Jionghao Lin; Wei Tan; Lan Du; Wray Buntine; David Lang; Dragan Gasevic; Guanliang Chen – IEEE Transactions on Learning Technologies, 2024
Automating the classification of instructional strategies from a large-scale online tutorial dialogue corpus is indispensable to the design of dialogue-based intelligent tutoring systems. Despite many existing studies employing supervised machine learning (ML) models to automate the classification process, they concluded that building a…
Descriptors: Classification, Dialogs (Language), Teaching Methods, Computer Assisted Instruction
Diana Šimic; Barbara Šlibar; Jelena Gusic Mundar; Sabina Rako – Technology, Knowledge and Learning, 2025
Researchers and practitioners from different disciplines (e.g., educational science, computer science, statistics) continuously enter the rapidly developing research field of learning analytics (LA) and bring along different perspectives and experiences in research design and methodology. Scientific communities share common problems, concepts,…
Descriptors: Learning Analytics, Higher Education, Science Education, Publications
Mayer, Christian W. F.; Ludwig, Sabrina; Brandt, Steffen – Journal of Research on Technology in Education, 2023
This study investigates the potential of automated classification using prompt-based learning approaches with transformer models (large language models trained in an unsupervised manner) for a domain-specific classification task. Prompt-based learning with zero or few shots has the potential to (1) make use of artificial intelligence without…
Descriptors: Prompting, Classification, Artificial Intelligence, Natural Language Processing

Peer reviewed
Direct link
