NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Andrew Kwok-Fai Lui; Sin-Chun Ng; Stella Wing-Nga Cheung – Interactive Learning Environments, 2024
The technology of automated short answer grading (ASAG) can efficiently process answers according to human-prepared grading examples. Computer-assisted acquisition of grading examples uses a computer algorithm to sample real student responses for potentially good examples. The process is critical for optimizing the grading accuracy of machine…
Descriptors: Grading, Computer Uses in Education, Educational Technology, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Abdul Ghaffar; Irfan Ud Din; Asadullah Tariq; Mohammad Haseeb Zafar – Review of Education, 2025
University Examination Timetabling Problem is the most important combinational problem to develop a conflict-free timetable to execute all of the exams in and with the limited timeslots and other resources for universities, colleges or schools. It is also an important Nondeterministic Polynomial Time (NP)-hard problem that has no deterministic…
Descriptors: Artificial Intelligence, Universities, Tests, Student Evaluation
Peer reviewed Peer reviewed
Direct linkDirect link
Clarivando Francisco Belizário Júnior; Fabiano Azevedo Dorça; Luciana Pereira de Assis; Alessandro Vivas Andrade – International Journal of Learning Technology, 2024
Loop-based intelligent tutoring systems (ITSs) support the learning process using a step-by-step problem-solving approach. A limitation of ITSs is that few contents are compatible with this approach. On the other hand, recommendation systems can recommend different types of content but ignore the fine-grained concepts typical of the step-by-step…
Descriptors: Artificial Intelligence, Educational Technology, Individualized Instruction, Cognitive Style
Harmon, Paul – Performance and Instruction, 1984
Considers three powerful techniques--heuristics, context trees, and search via backward chaining--that a knowledge engineer might employ to develop an expert system to automate performance engineering, i.e., the branch of instructional technology that focuses on the problems of business and industry. (MBR)
Descriptors: Algorithms, Artificial Intelligence, Computer Software, Educational Technology
Peer reviewed Peer reviewed
Schell, George P. – Journal of Educational Technology Systems, 1988
Reviews the development of artificial intelligence systems and the mechanisms used, including knowledge representation, programing languages, and problem processing systems. Eleven books and 6 journals are listed as sources of information on artificial intelligence. (23 references) (CLB)
Descriptors: Algorithms, Artificial Intelligence, Computer Science, Heuristics
Peer reviewed Peer reviewed
Rau, Lisa F.; And Others – Information Processing and Management, 1989
Describes SCISOR (System for Conceptual Information Summarization, Organization and Retrieval), a prototype intelligent information retrieval system that extracts useful information from large bodies of text. It overcomes limitations of linguistic coverage by applying a text processing strategy that is tolerant of unknown words and gaps in…
Descriptors: Algorithms, Artificial Intelligence, Automation, Computational Linguistics
Educational Technology, 1993
Provides the transcript of an interview with Dr. Lev Landa that addressed issues related to his algorithmico-heuristic theories of learning and instruction, called Landamatics. Highlights include teaching thinking versus knowledge; algorithms; instructional design; improving training and performance in industry, business, and government;…
Descriptors: Algorithms, Artificial Intelligence, Heuristics, Instructional Design
Peer reviewed Peer reviewed
Hoppe, H. Ulrich – Journal of Artificial Intelligence in Education, 1994
Examines the deductive approach to error diagnosis for intelligent tutoring systems. Topics covered include the principles of the deductive approach to diagnosis; domain-specific heuristics to solve the problem of generalizing error patterns; and deductive diagnosis and the hypertext-based learning environment. (Contains 26 references.) (JLB)
Descriptors: Algorithms, Artificial Intelligence, Computer Assisted Instruction, Deduction