NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 23 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Senay Kocakoyun Aydogan; Turgut Pura; Fatih Bingül – Malaysian Online Journal of Educational Technology, 2024
In every culture and era, education is considered the most fundamental reality and rule that societies prioritize and deem essential. Throughout the process spanning thousands of years, from the emergence of writing to the present day, education has undergone various forms and formats of change. Education has been a continuous guide for shaping,…
Descriptors: Prediction, Academic Achievement, Artificial Intelligence, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
Adam Sales; Ethan Prihar; Johann Gagnon-Bartsch; Neil Heffernan – Society for Research on Educational Effectiveness, 2023
Background: Randomized controlled trials (RCTs) give unbiased estimates of average effects. However, positive effects for the majority of students may mask harmful effects for smaller subgroups, and RCTs often have too small a sample to estimate these subgroup effects. In many RCTs, covariate and outcome data are drawn from a larger database. For…
Descriptors: Learning Analytics, Randomized Controlled Trials, Data Use, Accuracy
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shabnam Ara S. J.; Tanuja Ramachandriah; Manjula S. Haladappa – Online Learning, 2025
Predicting learner performance with precision is critical within educational systems, offering a basis for tailored interventions and instruction. The advent of big data analytics presents an opportunity to employ Machine Learning (ML) techniques to this end. Real-world data availability is often hampered by privacy concerns, prompting a shift…
Descriptors: Learning Analytics, Privacy, Artificial Intelligence, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Darvishi, Ali; Khosravi, Hassan; Sadiq, Shazia; Gaševic, Dragan – British Journal of Educational Technology, 2022
Peer assessment has been recognised as a sustainable and scalable assessment method that promotes higher-order learning and provides students with fast and detailed feedback on their work. Despite these benefits, some common concerns and criticisms are associated with the use of peer assessments (eg, scarcity of high-quality feedback from peer…
Descriptors: Artificial Intelligence, Learning Analytics, Peer Evaluation, Student Evaluation
Peer reviewed Peer reviewed
Direct linkDirect link
Imhof, Christof; Comsa, Ioan-Sorin; Hlosta, Martin; Parsaeifard, Behnam; Moser, Ivan; Bergamin, Per – IEEE Transactions on Learning Technologies, 2023
Procrastination, the irrational delay of tasks, is a common occurrence in online learning. Potential negative consequences include a higher risk of drop-outs, increased stress, and reduced mood. Due to the rise of learning management systems (LMS) and learning analytics (LA), indicators of such behavior can be detected, enabling predictions of…
Descriptors: Prediction, Time Management, Electronic Learning, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Mubarak, Ahmed Ali; Cao, Han; Ahmed, Salah A. M. – Education and Information Technologies, 2021
Analysis of learning behavior of MOOC enthusiasts has become a posed challenge in the Learning Analytics field, which is especially related to video lecture data, since most learners watch the same online lecture videos. It helps to conduct a comprehensive analysis of such behaviors and explore various learning patterns for learners and predict…
Descriptors: Learning Analytics, Online Courses, Video Technology, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Gyeonggeon Lee; Xiaoming Zhai – TechTrends: Linking Research and Practice to Improve Learning, 2025
Educators and researchers have analyzed various image data acquired from teaching and learning, such as images of learning materials, classroom dynamics, students' drawings, etc. However, this approach is labour-intensive and time-consuming, limiting its scalability and efficiency. The recent development in the Visual Question Answering (VQA)…
Descriptors: Artificial Intelligence, Computer Software, Teaching Methods, Learning Processes
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yueqiao Jin; Vanessa Echeverria; Lixiang Yan; Linxuan Zhao; Riordan Alfredo; Yi-Shan Tsai; Dragan Gasevic; Roberto Martinez-Maldonado – Journal of Learning Analytics, 2024
Multimodal learning analytics (MMLA) integrates novel sensing technologies and artificial intelligence algorithms, providing opportunities to enhance student reflection during complex, collaborative learning experiences. Although recent advancements in MMLA have shown its capability to generate insights into diverse learning behaviours across…
Descriptors: Learning Analytics, Accountability, Ethics, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Zi Xiang Poh; Ean Teng Khor – International Journal on E-Learning, 2024
Machine learning and data mining techniques have been widely used in educational settings to identify the important features that tend to influence students' learning performance and predict their future performance. However, there is little to no research done in the context of Singapore's education. Hence, this study aims to fill the gap by…
Descriptors: Learning Analytics, Goodness of Fit, Academic Achievement, Online Courses
Peer reviewed Peer reviewed
Direct linkDirect link
Ben Soussia, Amal; Labba, Chahrazed; Roussanaly, Azim; Boyer, Anne – International Journal of Information and Learning Technology, 2022
Purpose: The goal is to assess performance prediction systems (PPS) that are used to assist at-risk learners. Design/methodology/approach: The authors propose time-dependent metrics including earliness and stability. The authors investigate the relationships between the various temporal metrics and the precision metrics in order to identify the…
Descriptors: Performance, Prediction, Student Evaluation, At Risk Students
Peer reviewed Peer reviewed
Direct linkDirect link
Saleem Malik; K. Jothimani – Education and Information Technologies, 2024
Monitoring students' academic progress is vital for ensuring timely completion of their studies and supporting at-risk students. Educational Data Mining (EDM) utilizes machine learning and feature selection to gain insights into student performance. However, many feature selection algorithms lack performance forecasting systems, limiting their…
Descriptors: Algorithms, Decision Making, At Risk Students, Learning Management Systems
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Tsutsumi, Emiko; Kinoshita, Ryo; Ueno, Maomi – International Educational Data Mining Society, 2021
Knowledge tracing (KT), the task of tracking the knowledge state of each student over time, has been assessed actively by artificial intelligence researchers. Recent reports have described that Deep-IRT, which combines Item Response Theory (IRT) with a deep learning model, provides superior performance. It can express the abilities of each student…
Descriptors: Item Response Theory, Prediction, Accuracy, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Yunus Kökver; Hüseyin Miraç Pektas; Harun Çelik – Education and Information Technologies, 2025
This study aims to determine the misconceptions of teacher candidates about the greenhouse effect concept by using Artificial Intelligence (AI) algorithm instead of human experts. The Knowledge Discovery from Data (KDD) process model was preferred in the study where the Analyse, Design, Develop, Implement, Evaluate (ADDIE) instructional design…
Descriptors: Artificial Intelligence, Misconceptions, Preservice Teachers, Natural Language Processing
Zhun Deng – ProQuest LLC, 2021
Machine learning has achieved state-of-the-art performance in many areas, including image recognition and natural language processing. However, there are still many challenges and mysteries attracting numerous researchers. This dissertation comprises a series of works concerning problems at the intersection of computer science theory, adversarial…
Descriptors: Learning Analytics, Instructional Design, Artificial Intelligence, Computer Science
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Gedrimiene, Egle; Celik, Ismail; Mäkitalo, Kati; Muukkonen, Hanni – Journal of Learning Analytics, 2023
Transparency and trustworthiness are among the key requirements for the ethical use of learning analytics (LA) and artificial intelligence (AI) in the context of social inclusion and equity. However, research on these issues pertaining to users is lacking, leaving it unclear as to how transparent and trustworthy current LA tools are for their…
Descriptors: Learning Analytics, Accountability, Trust (Psychology), Artificial Intelligence
Previous Page | Next Page »
Pages: 1  |  2