Publication Date
In 2025 | 24 |
Descriptor
Artificial Intelligence | 24 |
Learning Analytics | 24 |
Computer Software | 11 |
Prediction | 7 |
Teaching Methods | 7 |
Algorithms | 6 |
Accuracy | 5 |
Feedback (Response) | 5 |
Foreign Countries | 5 |
Learning Processes | 5 |
Middle School Students | 5 |
More ▼ |
Source
Author
Conrad Borchers | 2 |
Vincent Aleven | 2 |
Abdelali Zakrani | 1 |
Abdellah Bennane | 1 |
Andy Nguyen | 1 |
Arnon Hershkovitz | 1 |
Baptiste Moreau-Pernet | 1 |
Bhagya Maheshi | 1 |
Cheah Chin Wei | 1 |
Chenglu Li | 1 |
Chit Lin Su | 1 |
More ▼ |
Publication Type
Journal Articles | 22 |
Reports - Research | 21 |
Information Analyses | 2 |
Speeches/Meeting Papers | 2 |
Reports - Descriptive | 1 |
Tests/Questionnaires | 1 |
Education Level
Higher Education | 9 |
Postsecondary Education | 9 |
Junior High Schools | 6 |
Middle Schools | 6 |
Secondary Education | 6 |
High Schools | 2 |
Elementary Education | 1 |
Grade 6 | 1 |
Grade 7 | 1 |
Grade 8 | 1 |
Grade 9 | 1 |
More ▼ |
Audience
Researchers | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Kamila Misiejuk; Sonsoles López-Pernas; Rogers Kaliisa; Mohammed Saqr – Journal of Learning Analytics, 2025
Generative artificial intelligence (GenAI) has opened new possibilities for designing learning analytics (LA) tools, gaining new insights about student learning processes and their environment, and supporting teachers in assessing and monitoring students. This systematic literature review maps the empirical research of 41 papers utilizing GenAI…
Descriptors: Literature Reviews, Artificial Intelligence, Learning Analytics, Data Collection
Flora Ji-Yoon Jin; Bhagya Maheshi; Wenhua Lai; Yuheng Li; Danijela Gasevic; Guanliang Chen; Nicola Charwat; Philip Wing Keung Chan; Roberto Martinez-Maldonado; Dragan Gaševic; Yi-Shan Tsai – Journal of Learning Analytics, 2025
This paper explores the integration of generative AI (GenAI) in the feedback process in higher education through a learning analytics (LA) tool, examined from a feedback literacy perspective. Feedback literacy refers to students' ability to understand, evaluate, and apply feedback effectively to improve their learning, which is crucial for…
Descriptors: College Students, Student Attitudes, Artificial Intelligence, Learning Analytics
Jyoti Prakash Meher; Rajib Mall – IEEE Transactions on Education, 2025
Contribution: This article suggests a novel method for diagnosing a learner's cognitive proficiency using deep neural networks (DNNs) based on her answers to a series of questions. The outcome of the forecast can be used for adaptive assistance. Background: Often a learner spends considerable amounts of time in attempting questions on the concepts…
Descriptors: Cognitive Ability, Assistive Technology, Adaptive Testing, Computer Assisted Testing
Shabnam Ara S. J.; Tanuja Ramachandriah; Manjula S. Haladappa – Online Learning, 2025
Predicting learner performance with precision is critical within educational systems, offering a basis for tailored interventions and instruction. The advent of big data analytics presents an opportunity to employ Machine Learning (ML) techniques to this end. Real-world data availability is often hampered by privacy concerns, prompting a shift…
Descriptors: Learning Analytics, Privacy, Artificial Intelligence, Regression (Statistics)
Ridwan Whitehead; Andy Nguyen; Sanna Järvelä – Journal of Learning Analytics, 2025
Incorporating non-verbal data streams is essential to understanding the dynamics of interaction within collaborative learning environments in which a variety of verbal and non-verbal modes of communication intersect. However, the complexity of non-verbal data -- especially gathered in the wild from collaborative learning contexts -- demands…
Descriptors: Case Studies, Nonverbal Communication, Video Technology, Data Analysis

Conrad Borchers; Jeroen Ooge; Cindy Peng; Vincent Aleven – Grantee Submission, 2025
Personalized problem selection enhances student practice in tutoring systems. Prior research has focused on transparent problem selection that supports learner control but rarely engages learners in selecting practice materials. We explored how different levels of control (i.e., full AI control, shared control, and full learner control), combined…
Descriptors: Intelligent Tutoring Systems, Artificial Intelligence, Learner Controlled Instruction, Learning Analytics
Wenyi Lu; Joseph Griffin; Troy D. Sadler; James Laffey; Sean P. Goggins – Journal of Learning Analytics, 2025
Game-based learning (GBL) is increasingly recognized as an effective tool for teaching diverse skills, particularly in science education, due to its interactive, engaging, and motivational qualities, along with timely assessments and intelligent feedback. However, more empirical studies are needed to facilitate its wider application in school…
Descriptors: Game Based Learning, Predictor Variables, Evaluation Methods, Educational Games
Kasra Lekan; Zachary A. Pardos – Journal of Learning Analytics, 2025
Choosing an undergraduate major is an important decision that impacts academic and career outcomes. In this work, we investigate augmenting personalized human advising for major selection using a large language model (LLM), GPT-4. Through a three-phase survey, we compare GPT suggestions and responses for undeclared first- and second-year students…
Descriptors: Technology Uses in Education, Artificial Intelligence, Academic Advising, Majors (Students)
Xiaona Xia; Wanxue Qi – European Journal of Education, 2025
Massive Open Online Courses (MOOCs) effectively support online learning behaviour; while constructing a sustainable learning process, MOOCs have also formed the social network. In addition, learners' burnout state has become a serious obstacle to the development and promotion of MOOCs. This study analyzes the potential social behaviour associated…
Descriptors: MOOCs, Burnout, Social Behavior, Feedback (Response)
Xavier Ochoa; Xiaomeng Huang; Yuli Shao – Journal of Learning Analytics, 2025
Generative AI (GenAI) has the potential to revolutionize the analysis of educational data, significantly impacting learning analytics (LA). This study explores the capability of non-experts, including administrators, instructors, and students, to effectively use GenAI for descriptive LA tasks without requiring specialized knowledge in data…
Descriptors: Learning Analytics, Artificial Intelligence, Computer Software, Scores
Stanislav Pozdniakov; Jonathan Brazil; Mehrnoush Mohammadi; Mollie Dollinger; Shazia Sadiq; Hassan Khosravi – Journal of Learning Analytics, 2025
Engaging students in creating high-quality novel content, such as educational resources, promotes deep and higher-order learning. However, students often lack the necessary training or knowledge to produce such content. To address this gap, this paper explores the potential of incorporating generative AI (GenAI) to review students' work and…
Descriptors: Student Evaluation, Artificial Intelligence, Student Developed Materials, Feedback (Response)
Gyeonggeon Lee; Xiaoming Zhai – TechTrends: Linking Research and Practice to Improve Learning, 2025
Educators and researchers have analyzed various image data acquired from teaching and learning, such as images of learning materials, classroom dynamics, students' drawings, etc. However, this approach is labour-intensive and time-consuming, limiting its scalability and efficiency. The recent development in the Visual Question Answering (VQA)…
Descriptors: Artificial Intelligence, Computer Software, Teaching Methods, Learning Processes
Eran Hadas; Arnon Hershkovitz – Journal of Learning Analytics, 2025
Creativity is an imperative skill for today's learners, one that has important contributions to issues of inclusion and equity in education. Therefore, assessing creativity is of major importance in educational contexts. However, scoring creativity based on traditional tools suffers from subjectivity and is heavily time- and labour-consuming. This…
Descriptors: Creativity, Evaluation Methods, Computer Assisted Testing, Artificial Intelligence
Cleon Xavier; Luiz Rodrigues; Newarney Costa; Rodrigues Neto; Gabriel Alves; Taciana Pontual Falcao; Dragan Gasevic; Rafael Ferreira Mello – IEEE Transactions on Learning Technologies, 2025
Providing timely and personalized feedback on open-ended student responses is a challenge in education due to the increased workloads and time constraints educators face. While existing research has explored how learning analytic approaches can support feedback provision, previous studies have not sufficiently investigated educators' perspectives…
Descriptors: Teacher Empowerment, Learning Analytics, Artificial Intelligence, Computer Software
Lei Tao; Hao Deng; Yanjie Song – Educational Technology & Society, 2025
Information and communication technologies have transformed education, driving it towards intelligent teaching and learning. With the rise of generative artificial intelligence (AI), represented by tools such as ChatGPT, there is also a growing body of literature on generative AI in education. In this study, we searched the Scopus, ERIC, and Web…
Descriptors: Artificial Intelligence, Computer Software, Technology Uses in Education, Teaching Methods
Previous Page | Next Page »
Pages: 1 | 2