ERIC Number: EJ1263126
Record Type: Journal
Publication Date: 2020
Pages: 13
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-0020-739X
EISSN: N/A
Available Date: N/A
Generalized Stirling Numbers and Sums of Powers of Arithmetic Progressions
Cereceda, José Luis
International Journal of Mathematical Education in Science and Technology, v51 n6 p954-966 2020
In this paper, we first focus on the sum of powers of the first n positive odd integers, T[subscript k](n)=1[superscript k]+3[superscript k]+5[superscript k]+...+(2n-1)[superscript k], and derive in an elementary way a polynomial formula for T[subscript k](n) in terms of a specific type of generalized Stirling numbers. Then we consider the sum of powers of an arbitrary arithmetic progression and obtain the corresponding polynomial formula in terms of the so-called r-Whitney numbers of the second kind. This latter formula produces, in particular, the well-known formula for the sum of powers of the first n natural numbers in terms of the usual Stirling numbers of the second kind. Furthermore, we provide several other alternative formulas for evaluating the sums of powers of arithmetic progressions.
Taylor & Francis. Available from: Taylor & Francis, Ltd. 530 Walnut Street Suite 850, Philadelphia, PA 19106. Tel: 800-354-1420; Tel: 215-625-8900; Fax: 215-207-0050; Web site: http://www.tandf.co.uk/journals
Publication Type: Journal Articles; Reports - Descriptive
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A