NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Ndlovu, Zanele; Brijlall, Deonarain – African Journal of Research in Mathematics, Science and Technology Education, 2015
This study is part of ongoing research in undergraduate mathematics education. The study was guided by the belief that understanding the mental constructions the pre-service teachers make when learning matrix algebra concepts leads to improved instructional methods. In this preliminary study the data was collected from 85 pre-service teachers…
Descriptors: Preservice Teachers, Mathematics Instruction, Algebra, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Simoson, Andrew J. – PRIMUS, 2009
This article presents a fun activity of generating a double-minded fractal image for a linear algebra class once the idea of rotation and scaling matrices are introduced. In particular the fractal flip-flops between two words, depending on the level at which the image is viewed. (Contains 5 figures.)
Descriptors: Geometric Concepts, Matrices, Mathematics Instruction, Mathematical Concepts
Peer reviewed Peer reviewed
Lancaster, Ronald J. – Mathematics Teacher, 1979
Two statements concerning magic squares, considered as 3x3 matrices, are discussed and their proofs given using only high school level techniques. (MP)
Descriptors: Algebra, Instruction, Learning Activities, Mathematics
Peer reviewed Peer reviewed
Richards, Arnall – Mathematics in School, 1976
Students were presented with the problem of finding all magic squares of order three. (SD)
Descriptors: Algebra, Curriculum, Instruction, Learning Activities
Robin, Anthony C. – Mathematics Teaching, 1976
Finding the shortest route between two points can be approached by vector methods. Several types of matrices modelling a map of 6 cities are described. (SD)
Descriptors: Algebra, Curriculum, Geometry, Instruction
Peer reviewed Peer reviewed
van den Essen, Arno – American Mathematical Monthly, 1990
Discussed is the use of magic squares as examples in a first year course in linear algebra. Four examples are presented with each including the proposition, the procedure, and a proof. (KR)
Descriptors: Algebra, College Mathematics, Higher Education, Learning Activities
Peer reviewed Peer reviewed
Newton, Tyre A. – American Mathematical Monthly, 1990
Presented is a method where a quadratic equation is solved and from its roots the eigenvalues and corresponding eigenvectors are determined immediately. Included are the proposition, the procedure, and comments. (KR)
Descriptors: Algebra, Algorithms, College Mathematics, Equations (Mathematics)
Peer reviewed Peer reviewed
Richman, Fred – American Mathematical Monthly, 1990
Discussed is how a separable field extension can play a major role in many treatments of Galois theory. The technique of diagonalizing matrices is used. Included are the introduction, the proofs, theorems, and corollaries. (KR)
Descriptors: Algebra, College Mathematics, Higher Education, Instructional Materials
Peer reviewed Peer reviewed
Friedberg, Stephen H. – American Mathematical Monthly, 1990
That the principal axis theorem does not extend to any finite field is demonstrated. Presented are four examples that illustrate the difficulty in extending the principal axis theorem to fields other than the field of real numbers. Included are a theorem and proof that uses only a simple counting argument. (KR)
Descriptors: Algebra, College Mathematics, Equations (Mathematics), Higher Education
Peer reviewed Peer reviewed
London, R. R.; Rogosinski, H. P. – American Mathematical Monthly, 1990
Described is a decomposition theory from which the Cayley-Hamilton theorem, the diagonalizability of complex square matrices, and functional calculus can be developed. The theory and its applications are based on elementary polynomial algebra. (KR)
Descriptors: Algebra, Calculus, College Mathematics, Equations (Mathematics)
Peer reviewed Peer reviewed
Kalman, Dan – Mathematics Magazine, 1990
Presented is a scheduling algorithm that uses all the busses at each step for any rectangular array. Included are two lemmas, proofs, a theorem, the solution, and variations on this problem. (KR)
Descriptors: Algebra, Algorithms, College Mathematics, Computer Science