NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Anna Khalemsky; Roy Gelbard; Yelena Stukalin – Journal of Statistics and Data Science Education, 2025
Classification, a fundamental data analytics task, has widespread applications across various academic disciplines, such as marketing, finance, sociology, psychology, education, and public health. Its versatility enables researchers to explore diverse research questions and extract valuable insights from data. Therefore, it is crucial to extend…
Descriptors: Classification, Undergraduate Students, Undergraduate Study, Data Science
Peer reviewed Peer reviewed
Direct linkDirect link
Byran J. Smucker; Nathaniel T. Stevens; Jacqueline Asscher; Peter Goos – Journal of Statistics and Data Science Education, 2023
The design and analysis of experiments (DOE) has historically been an important part of an education in statistics, and with the increasing complexity of modern production processes and the advent of large-scale online experiments, it continues to be highly relevant. In this article, we provide an extensive review of the literature on DOE…
Descriptors: Statistics Education, Data Science, Experiments, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Bahar Memarian; Tenzin Doleck – Education and Information Technologies, 2024
The development of data science curricula has gained attention in academia and industry. Yet, less is known about the pedagogical practices and tools employed in data science education. Through a systematic literature review, we summarize prior pedagogical practices and tools used in data science initiatives at the higher education level.…
Descriptors: Data Science, Teaching Methods, Literature Reviews, Curriculum Development
Peer reviewed Peer reviewed
Direct linkDirect link
Jo Boaler; Kira Conte; Ken Cor; Jack A. Dieckmann; Tanya LaMar; Jesse Ramirez; Megan Selbach-Allen – Journal of Statistics and Data Science Education, 2025
This article reports on a multi-method study of a high school course in data science, finding that students who take data science take more mathematics courses than those who do not, there are more under-represented students in data science than is typical for other advanced mathematics courses; that the students who take data science are more…
Descriptors: Mathematics Instruction, Opportunities, High School Students, Data Science
Peer reviewed Peer reviewed
Direct linkDirect link
Qing Wang; Xizhen Cai – Journal of Statistics and Data Science Education, 2024
Support vector classifiers are one of the most popular linear classification techniques for binary classification. Different from some commonly seen model fitting criteria in statistics, such as the ordinary least squares criterion and the maximum likelihood method, its algorithm depends on an optimization problem under constraints, which is…
Descriptors: Active Learning, Class Activities, Classification, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Tiffany Tseng; Matt J. Davidson; Luis Morales-Navarro; Jennifer King Chen; Victoria Delaney; Mark Leibowitz; Jazbo Beason; R. Benjamin Shapiro – ACM Transactions on Computing Education, 2024
Machine learning (ML) models are fundamentally shaped by data, and building inclusive ML systems requires significant considerations around how to design representative datasets. Yet, few novice-oriented ML modeling tools are designed to foster hands-on learning of dataset design practices, including how to design for data diversity and inspect…
Descriptors: Artificial Intelligence, Models, Data Processing, Design
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Joao Alberto Arantes do Amaral; Izabel Patricia Meister; Valeria Sperduti Lima; Gisele Grinevicius Garbe – Journal of Problem Based Learning in Higher Education, 2023
In this article, we presented our findings regarding an online project-based learning course, delivered to 64 students from the Federal University of Sao Paulo, Brazil, during the COVID-19 pandemic, in the second semester of 2021. The course had the goal of teaching Project Management by means of a competition (the Data Science Olympics). Our goal…
Descriptors: Competition, Active Learning, Student Projects, Data Science
Peer reviewed Peer reviewed
Direct linkDirect link
Amanda Barany; Andi Danielle Scarola; Alex Acquah; Sayed Mohsin Reza; Michael A. Johnson; Justice Walker – Information and Learning Sciences, 2024
Purpose: There is a need for precollege learning designs that empower youth to be epistemic agents in contexts that intersect burgeoning areas of computing, big data and social media. The purpose of this study is to explore how "sandbox" or open-inquiry data science with social media supports learning. Design/methodology/approach: This…
Descriptors: Student Empowerment, Data Science, Social Media, Open Education
Peer reviewed Peer reviewed
Direct linkDirect link
Nathan A. Quarderer; Leah Wasser; Anne U. Gold; Patricia MontaƱo; Lauren Herwehe; Katherine Halama; Emily Biggane; Jessica Logan; David Parr; Sylvia Brady; James Sanovia; Charles Jason Tinant; Elisha Yellow Thunder; Justina White Eyes; LaShell Poor Bear/Bagola; Madison Phelps; Trey Orion Phelps; Brett Alberts; Michela Johnson; Nathan Korinek; William Travis; Naomi Jacquez; Kaiea Rohlehr; Emily Ward; Elsa Culler; R. Chelsea Nagy; Jennifer Balch – Journal of Statistics and Data Science Education, 2025
Today's data-driven world requires earth and environmental scientists to have skills at the intersection of domain and data science. These skills are imperative to harness information contained in a growing volume of complex data to solve the world's most pressing environmental challenges. Despite the importance of these skills, Earth and…
Descriptors: Electronic Learning, Earth Science, Environmental Education, Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Anna Khalemsky; Yelena Stukalin – Statistics Education Research Journal, 2024
The article describes the inclusive perspective of instruction of multi-stage practical projects in undergraduate non-STEM statistics and data mining courses at an academic college in Israel. The student population is highly diverse, comprising individuals from various cultural and ethnic groups. The study examines the impact of diversity on…
Descriptors: Foreign Countries, Undergraduate Students, Statistics Education, Data Science