Publication Date
| In 2026 | 0 |
| Since 2025 | 1 |
| Since 2022 (last 5 years) | 2 |
| Since 2017 (last 10 years) | 3 |
| Since 2007 (last 20 years) | 4 |
Descriptor
| Accuracy | 4 |
| Artificial Intelligence | 4 |
| Data | 4 |
| Natural Language Processing | 4 |
| Models | 3 |
| Automation | 2 |
| Classification | 2 |
| Computer Assisted Testing | 2 |
| Educational Assessment | 2 |
| Educational Research | 2 |
| Feedback (Response) | 2 |
| More ▼ | |
Source
| Assessment & Evaluation in… | 1 |
| International Educational… | 1 |
| International Working Group… | 1 |
| Journal of Educational… | 1 |
Author
Publication Type
| Reports - Research | 3 |
| Journal Articles | 2 |
| Collected Works - Proceedings | 1 |
| Speeches/Meeting Papers | 1 |
Education Level
| Higher Education | 2 |
| Postsecondary Education | 2 |
| Adult Education | 1 |
| Elementary Education | 1 |
| Elementary Secondary Education | 1 |
| Grade 10 | 1 |
| Grade 12 | 1 |
| Grade 4 | 1 |
| Grade 7 | 1 |
| Grade 8 | 1 |
| Grade 9 | 1 |
| More ▼ | |
Audience
Location
| Australia | 1 |
| Czech Republic | 1 |
| Israel | 1 |
| Massachusetts | 1 |
| Netherlands | 1 |
| North Carolina | 1 |
| Pennsylvania | 1 |
| Slovakia | 1 |
| Spain | 1 |
| United Kingdom | 1 |
| United States | 1 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
| Massachusetts Comprehensive… | 1 |
What Works Clearinghouse Rating
Luyang Fang; Gyeonggeon Lee; Xiaoming Zhai – Journal of Educational Measurement, 2025
Machine learning-based automatic scoring faces challenges with imbalanced student responses across scoring categories. To address this, we introduce a novel text data augmentation framework that leverages GPT-4, a generative large language model specifically tailored for imbalanced datasets in automatic scoring. Our experimental dataset consisted…
Descriptors: Computer Assisted Testing, Artificial Intelligence, Automation, Scoring
Shimmei, Machi; Matsuda, Noboru – International Educational Data Mining Society, 2023
We propose an innovative, effective, and data-agnostic method to train a deep-neural network model with an extremely small training dataset, called VELR (Voting-based Ensemble Learning with Rejection). In educational research and practice, providing valid labels for a sufficient amount of data to be used for supervised learning can be very costly…
Descriptors: Artificial Intelligence, Training, Natural Language Processing, Educational Research
Rybinski, Krzysztof; Kopciuszewska, Elzbieta – Assessment & Evaluation in Higher Education, 2021
This article presents the first-ever big data study of the student evaluation of teaching (SET) using artificial intelligence (AI). We train natural language processing (NLP) models on 1.6 million student evaluations from the US and the UK. We address two research questions: (1) are these models able to predict student ratings from the student…
Descriptors: Artificial Intelligence, Technology Uses in Education, Student Evaluation of Teacher Performance, Natural Language Processing
Barnes, Tiffany, Ed.; Desmarais, Michel, Ed.; Romero, Cristobal, Ed.; Ventura, Sebastian, Ed. – International Working Group on Educational Data Mining, 2009
The Second International Conference on Educational Data Mining (EDM2009) was held at the University of Cordoba, Spain, on July 1-3, 2009. EDM brings together researchers from computer science, education, psychology, psychometrics, and statistics to analyze large data sets to answer educational research questions. The increase in instrumented…
Descriptors: Data Analysis, Educational Research, Conferences (Gatherings), Foreign Countries

Peer reviewed
Direct link
