Publication Date
In 2025 | 1 |
Since 2024 | 8 |
Since 2021 (last 5 years) | 23 |
Since 2016 (last 10 years) | 67 |
Since 2006 (last 20 years) | 174 |
Descriptor
Academic Achievement | 224 |
Student Behavior | 224 |
Tables (Data) | 90 |
Data Analysis | 76 |
Higher Education | 74 |
Scores | 71 |
Comparative Analysis | 70 |
Mathematics Instruction | 68 |
Educational Practices | 67 |
Academic Persistence | 66 |
Educational Assessment | 65 |
More ▼ |
Source
Author
Bowers, Norman D. | 3 |
Vogel, Francis X. | 3 |
Coleman, James | 2 |
Crosby, Danielle A. | 2 |
Duncan, Greg J. | 2 |
Eldred, Carolyn A. | 2 |
Huston, Aletha C. | 2 |
Lowe, Edward | 2 |
McLoyd. Vonnie C. | 2 |
Miller, Cynthia. | 2 |
Redcross, Cindy | 2 |
More ▼ |
Publication Type
Education Level
Location
California | 7 |
United States | 7 |
Australia | 5 |
Texas | 5 |
Florida | 4 |
New York | 4 |
North Carolina | 4 |
Pennsylvania | 4 |
Turkey | 4 |
Arizona | 3 |
China | 3 |
More ▼ |
Laws, Policies, & Programs
No Child Left Behind Act 2001 | 3 |
Stewart B McKinney Homeless… | 3 |
Elementary and Secondary… | 2 |
Every Student Succeeds Act… | 1 |
Goals 2000 | 1 |
Temporary Assistance for… | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Meets WWC Standards without Reservations | 1 |
Meets WWC Standards with or without Reservations | 2 |
Narjes Rohani; Behnam Rohani; Areti Manataki – Journal of Educational Data Mining, 2024
The prediction of student performance and the analysis of students' learning behaviour play an important role in enhancing online courses. By analysing a massive amount of clickstream data that captures student behaviour, educators can gain valuable insights into the factors that influence students' academic outcomes and identify areas of…
Descriptors: Mathematics Education, Models, Prediction, Knowledge Level
Umer, Rahila; Susnjak, Teo; Mathrani, Anuradha; Suriadi, Lim – Interactive Learning Environments, 2023
Predictive models on students' academic performance can be built by using historical data for modelling students' learning behaviour. Such models can be employed in educational settings to determine how new students will perform and in predicting whether these students should be classed as at-risk of failing a course. Stakeholders can use…
Descriptors: Prediction, Student Behavior, Models, Academic Achievement
Shoaib, Muhammad; Sayed, Nasir; Amara, Nedra; Latif, Abdul; Azam, Sikandar; Muhammad, Sajjad – Education and Information Technologies, 2022
Technology and data analysis have evolved into a resource-rich tool for collecting, researching and comparing student achievement levels in the classroom. There are sufficient resources to discover student success through data analysis by routinely collecting extensive data on student behaviour and curriculum structure. Educational Data Mining…
Descriptors: Prediction, Artificial Intelligence, Student Behavior, Academic Achievement
Aom Perkash; Qaisar Shaheen; Robina Saleem; Furqan Rustam; Monica Gracia Villar; Eduardo Silva Alvarado; Isabel de la Torre Diez; Imran Ashraf – Education and Information Technologies, 2024
Developing tools to support students, educators, intuitions, and government in the educational environment has become an important task to improve the quality of education and learning outcomes. Information and communication technology (ICT) is adopted by educational institutions; one such instance is video interaction in flipped teaching.…
Descriptors: Academic Achievement, Colleges, Artificial Intelligence, Predictor Variables
Wilhelmina Van Dijk; Cynthia U. Norris; Stephanie Al Otaiba; Christopher Schatschneider; Sara A. Hart – Grantee Submission, 2022
This manuscript provides information on datasets pertaining to Project KIDS. Datasets include behavioral and achievement data for over 4,000 students between five and twelve years old participating in nine randomized control trials of reading instruction and intervention between 2005-2011, and information on home environments of a subset of 442…
Descriptors: Data, Reading Instruction, Intervention, Family Environment
Juan D’Brot; W. Chris Brandt – Region 5 Comprehensive Center, 2024
In today's educational landscape, state and local educational agencies (SEAs and LEAs) often experience challenges connecting large-scale accountability data with actual school improvement initiatives. These challenges tend to be rooted in incoherent design and use of data systems for continuous improvement. As we aim to support SEAs in…
Descriptors: Educational Improvement, Data Collection, State Departments of Education, School Districts
Chinsook, Kittipong; Khajonmote, Withamon; Klintawon, Sununta; Sakulthai, Chaiyan; Leamsakul, Wicha; Jantakoon, Thada – Higher Education Studies, 2022
Big data is an important part of innovation that has recently attracted a lot of interest from academics and practitioners alike. Given the importance of the education industry, there is a growing trend to investigate the role of big data in this field. Much research has been undertaken to date in order to better understand the use of big data in…
Descriptors: Student Behavior, Learning Analytics, Computer Software, Rating Scales
Varun Mandalapu – ProQuest LLC, 2021
Educational data mining focuses on exploring increasingly large-scale data from educational settings, such as Learning Management Systems (LMS), and developing computational methods to understand students' behaviors and learning settings better. There has been a multitude of research dedicated to studying the student learning process, leading to…
Descriptors: Models, Student Behavior, Learning Management Systems, Data Use
Knudson, Joel – California Collaborative on District Reform, 2020
School closures in response to the COVID-19 pandemic have dramatically changed the conditions in which students learn and experience schooling. Disparities in students' access to learning and in their academic outcomes are likely to exacerbate longstanding challenges and inequities. Now more than ever, educators need information that will help…
Descriptors: Data Use, Educational Improvement, Equal Education, Data Collection
Bessadok, Adel; Abouzinadah, Ehab; Rabie, Osama – Interactive Technology and Smart Education, 2023
Purpose: This paper aims to investigate the relationship between the students' digital activities and their academic performance through two stages. In the first stage, students' digital activities were studied and clustered based on the attributes of their activity log of learning management system (LMS) data set. In the second stage, the…
Descriptors: Learning Activities, Academic Achievement, Learning Management Systems, Data Analysis
Lemay, David John; Doleck, Tenzin – Interactive Learning Environments, 2022
Predicting student performance in Massive Open Online Courses (MOOCs) is important to aid in retention efforts. Researchers have demonstrated that video watching features can be used to accurately predict student test performance on video quizzes employing neural networks to predict video test grades from viewing behavior including video searching…
Descriptors: MOOCs, Academic Achievement, Prediction, Student Behavior
Du, Xiaoming; Ge, Shilun; Wang, Nianxin – International Journal of Information and Communication Technology Education, 2022
In the context of education big data, it uses data mining and learning analysis technology to accurately predict and effectively intervene in learning. It is helpful to realize individualized teaching and individualized teaching. This research analyzes student life behavior data and learning behavior data. A model of student behavior…
Descriptors: Prediction, Data, Student Behavior, Academic Achievement
Asselman, Amal; Khaldi, Mohamed; Aammou, Souhaib – Interactive Learning Environments, 2023
Performance Factors Analysis (PFA) is considered one of the most important Knowledge Tracing (KT) approaches used for constructing adaptive educational hypermedia systems. It has shown a high prediction accuracy against many other KT approaches. While, the desire to estimate more accurately the student level leads researchers to enhance PFA by…
Descriptors: Algorithms, Artificial Intelligence, Factor Analysis, Student Behavior
Xu, Tonghui – Journal of Educators Online, 2023
The early detection of students' academic performance or final grades helps instructors prepare their online courses. In the Open University Learning Analytics Dataset, I found many online students clicked the course materials before the first day of class. This study aims to investigate how data mining models can use this student interaction data…
Descriptors: College Students, Online Courses, Academic Achievement, Data Analysis
Juan Pablo Salazar-Fernandez; Jorge Munoz-Gama; Marcos Sepúlveda – Higher Education: The International Journal of Higher Education Research, 2025
Understanding how students with low socioeconomic status finance their tuition over time can help us comprehend the impact of students' decisions on their subsequent curricular progress, graduation, or dropout. This work presents a curricular analytics approach using process mining techniques to study educational funding trajectories as processes.…
Descriptors: Scholarships, Merit Scholarships, Student Needs, Learning Trajectories