NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Diana Šimic; Barbara Šlibar; Jelena Gusic Mundar; Sabina Rako – Technology, Knowledge and Learning, 2025
Researchers and practitioners from different disciplines (e.g., educational science, computer science, statistics) continuously enter the rapidly developing research field of learning analytics (LA) and bring along different perspectives and experiences in research design and methodology. Scientific communities share common problems, concepts,…
Descriptors: Learning Analytics, Higher Education, Science Education, Publications
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shi Pu; Yu Yan; Brandon Zhang – Journal of Educational Data Mining, 2024
We propose a novel model, Wide & Deep Item Response Theory (Wide & Deep IRT), to predict the correctness of students' responses to questions using historical clickstream data. This model combines the strengths of conventional Item Response Theory (IRT) models and Wide & Deep Learning for Recommender Systems. By leveraging clickstream…
Descriptors: Prediction, Success, Data Analysis, Learning Analytics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Huang, Eddie; Valdiviejas, Hannah; Bosch, Nigel – Grantee Submission, 2019
Metacognition is a valuable tool for learning, since it is closely related to self-regulation and awareness of one's own affect. However, methods for automatically detecting and studying metacognition are scarce. Thus, in this paper we describe an algorithm for automatic detection of metacognitive language in writing. We analyzed text from the…
Descriptors: Metacognition, Mathematics, Language Usage, Writing (Composition)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kim, Byungsoo; Yu, Hangyeol; Shin, Dongmin; Choi, Youngduck – International Educational Data Mining Society, 2021
The needs for precisely estimating a student's academic performance have been emphasized with an increasing amount of attention paid to Intelligent Tutoring System (ITS). However, since labels for academic performance, such as test scores, are collected from outside of ITS, obtaining the labels is costly, leading to label-scarcity problem which…
Descriptors: Academic Achievement, Intelligent Tutoring Systems, Prediction, Scores