NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 1,872 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Majdi Beseiso – TechTrends: Linking Research and Practice to Improve Learning, 2025
Predicting students' success is crucial in educational settings to improve academic performance and prevent dropouts. This study aimed to improve student performance prediction by combining advanced machine learning (ML) approaches. Convolutional Neural Networks (CNNs) and attention mechanisms were used for extracting relevant features from…
Descriptors: Prediction, Success, Academic Achievement, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Narjes Rohani; Behnam Rohani; Areti Manataki – Journal of Educational Data Mining, 2024
The prediction of student performance and the analysis of students' learning behaviour play an important role in enhancing online courses. By analysing a massive amount of clickstream data that captures student behaviour, educators can gain valuable insights into the factors that influence students' academic outcomes and identify areas of…
Descriptors: Mathematics Education, Models, Prediction, Knowledge Level
Peer reviewed Peer reviewed
Direct linkDirect link
Yanzheng Li; Zorka Karanxha – Educational Management Administration & Leadership, 2024
This systematic literature review critically evaluates 14 empirical studies published over a 14 years span (2006-2019) to answer questions about the models and the effects of transformational school leadership on student academic achievement. The analysis of the related literature utilized vote counting and narrative synthesis to delineate the…
Descriptors: Transformational Leadership, Instructional Leadership, Academic Achievement, Models
Leone, Elizabeth L. – ProQuest LLC, 2023
Data collection and analyzation practices for English language development services are scarcely found in research, but needed in the subgroup of minority students commonly known as English language learners (Wiseman & Bell, 2021). Wiseman and Bell (2021) identified ELLs as one of the most under-documented student subgroups in the American…
Descriptors: Data Collection, Data Analysis, Second Language Learning, English Language Learners
Peer reviewed Peer reviewed
Direct linkDirect link
Goffin, Evelyn; Janssen, Rianne; Vanhoof, Jan – Review of Education, 2022
Formal achievement data such as test scores and school performance feedback from standardised assessments can be a powerful tool for data-based decision making and school improvement. However, teachers' and school leaders' usage of these data is not necessarily straightforward or predictable. In order to illuminate how educational professionals…
Descriptors: Teacher Attitudes, Administrator Attitudes, Academic Achievement, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Batool, Saba; Rashid, Junaid; Nisar, Muhammad Wasif; Kim, Jungeun; Kwon, Hyuk-Yoon; Hussain, Amir – Education and Information Technologies, 2023
Educational data mining is an emerging interdisciplinary research area involving both education and informatics. It has become an imperative research area due to many advantages that educational institutions can achieve. Along these lines, various data mining techniques have been used to improve learning outcomes by exploring large-scale data that…
Descriptors: Academic Achievement, Prediction, Data Use, Information Retrieval
Peer reviewed Peer reviewed
Direct linkDirect link
Keser, Sinem Bozkurt; Aghalarova, Sevda – Education and Information Technologies, 2022
Education plays a major role in the development of the consciousness of the whole society. Education has been improved by analyzing educational data related to student academic performance. By using data mining techniques and algorithms on data from the educational environment, students' performances can be predicted. In this study, a novel Hybrid…
Descriptors: Grade Prediction, Academic Achievement, Data Analysis, Data Collection
Peer reviewed Peer reviewed
Direct linkDirect link
Liang Zhang; Jionghao Lin; John Sabatini; Conrad Borchers; Daniel Weitekamp; Meng Cao; John Hollander; Xiangen Hu; Arthur C. Graesser – IEEE Transactions on Learning Technologies, 2025
Learning performance data, such as correct or incorrect answers and problem-solving attempts in intelligent tutoring systems (ITSs), facilitate the assessment of knowledge mastery and the delivery of effective instructions. However, these data tend to be highly sparse (80%90% missing observations) in most real-world applications. This data…
Descriptors: Artificial Intelligence, Academic Achievement, Data, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Lei Zhang – Discover Education, 2025
This systematic review presents the first synthesis of the scientific literature on estimating school and teacher/class effects on student academic performance using random-effects (RE) models with three or more levels. The review delves into the theoretical framework underpinning the estimation of educational effects, the associated statistical…
Descriptors: Academic Achievement, Teacher Effectiveness, School Effectiveness, Content Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Yu-Jie Wang; Chang-Lei Gao; Xin-Dong Ye – Education and Information Technologies, 2024
The continuous development of Educational Data Mining (EDM) and Learning Analytics (LA) technologies has provided more effective technical support for accurate early warning and interventions for student academic performance. However, the existing body of research on EDM and LA needs more empirical studies that provide feedback interventions, and…
Descriptors: Precision Teaching, Data Use, Intervention, Educational Improvement
Peer reviewed Peer reviewed
Direct linkDirect link
Umer, Rahila; Susnjak, Teo; Mathrani, Anuradha; Suriadi, Lim – Interactive Learning Environments, 2023
Predictive models on students' academic performance can be built by using historical data for modelling students' learning behaviour. Such models can be employed in educational settings to determine how new students will perform and in predicting whether these students should be classed as at-risk of failing a course. Stakeholders can use…
Descriptors: Prediction, Student Behavior, Models, Academic Achievement
Peer reviewed Peer reviewed
Direct linkDirect link
Knight, Jim; Faggella-Luby, Michael – Learning Professional, 2022
Data is so deeply woven into the fabric of people's lives that it is next to impossible to imagine what a data-free life would be like. But despite the centrality of data in everyone's personal lives, when people talk about data in schools, their comments are often negative. The authors of this article believe "data" should not be a…
Descriptors: Coaching (Performance), Teacher Effectiveness, Instructional Effectiveness, Data Use
Peer reviewed Peer reviewed
Direct linkDirect link
Shoaib, Muhammad; Sayed, Nasir; Amara, Nedra; Latif, Abdul; Azam, Sikandar; Muhammad, Sajjad – Education and Information Technologies, 2022
Technology and data analysis have evolved into a resource-rich tool for collecting, researching and comparing student achievement levels in the classroom. There are sufficient resources to discover student success through data analysis by routinely collecting extensive data on student behaviour and curriculum structure. Educational Data Mining…
Descriptors: Prediction, Artificial Intelligence, Student Behavior, Academic Achievement
Bret Bailey – ProQuest LLC, 2024
The purpose of this quantitative study was to provide school district leaders and policymakers information of the impact grade configuration had on academic performance using math and ELA ILEARN scores over a three-year period. The study included data from 585 schools that were classified into four groups: Elementary Setting, Intermediate Setting,…
Descriptors: Academic Achievement, Grade 6, Data, Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Aom Perkash; Qaisar Shaheen; Robina Saleem; Furqan Rustam; Monica Gracia Villar; Eduardo Silva Alvarado; Isabel de la Torre Diez; Imran Ashraf – Education and Information Technologies, 2024
Developing tools to support students, educators, intuitions, and government in the educational environment has become an important task to improve the quality of education and learning outcomes. Information and communication technology (ICT) is adopted by educational institutions; one such instance is video interaction in flipped teaching.…
Descriptors: Academic Achievement, Colleges, Artificial Intelligence, Predictor Variables
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  125