NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 23 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Khalid Alalawi; Rukshan Athauda; Raymond Chiong – International Journal of Artificial Intelligence in Education, 2025
The use of educational data mining and machine learning to analyse large data sets collected by educational institutions has the potential to discover valuable insights for decision-making. One such area that has gained attention is to predict student performance by analysing large educational data sets. In the relevant literature, many studies…
Descriptors: Learning Analytics, Technology Integration, Electronic Learning, Educational Practices
Peer reviewed Peer reviewed
Direct linkDirect link
Shabnam Ara, S. J.; Tanuja, R.; Manjula, S. H.; Venugopal, K. R. – Journal of Educational Technology Systems, 2023
Learning analytics (LA) is considered a promising field of study as it's helping to improve learning and the context in which it occurs. A learner's performance can be defined as how well students are learning in terms of knowledge and skills development and can be analyzed based on students' outcomes and engagement in the course. We have…
Descriptors: Learning Analytics, Learning Management Systems, Academic Achievement, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Kelli A. Bird; Benjamin L. Castleman; Yifeng Song – Journal of Policy Analysis and Management, 2025
Predictive analytics are increasingly pervasive in higher education. However, algorithmic bias has the potential to reinforce racial inequities in postsecondary success. We provide a comprehensive and translational investigation of algorithmic bias in two separate prediction models--one predicting course completion, the second predicting degree…
Descriptors: Algorithms, Technology Uses in Education, Bias, Racism
Peer reviewed Peer reviewed
Direct linkDirect link
MD, Soumya; Krishnamoorthy, Shivsubramani – Education and Information Technologies, 2022
In recent times, Educational Data Mining and Learning Analytics have been abundantly used to model decision-making to improve teaching/learning ecosystems. However, the adaptation of student models in different domains/courses needs a balance between the generalization and context specificity to reduce the redundancy in creating domain-specific…
Descriptors: Predictor Variables, Academic Achievement, Higher Education, Learning Analytics
Peer reviewed Peer reviewed
Direct linkDirect link
Susana Sánchez Castro; María Ángeles Pascual Sevillano; Javier Fombona Cadavieco – Technology, Knowledge and Learning, 2024
The planned systematized design of the use of serious games in the classroom is presented as a strategy to optimize learning. In this framework, Learning Analytics represents stealth assessment and follow-up method, and a way to personalize such games by simplifying their application for teachers. The aim of this research was to analyze the impact…
Descriptors: Learning Analytics, Linguistic Competence, At Risk Students, Teaching Methods
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zareen Alamgir; Habiba Akram; Saira Karim; Aamir Wali – Informatics in Education, 2024
Educational data mining is widely deployed to extract valuable information and patterns from academic data. This research explores new features that can help predict the future performance of undergraduate students and identify at-risk students early on. It answers some crucial and intuitive questions that are not addressed by previous studies.…
Descriptors: Data Analysis, Information Retrieval, Content Analysis, Information Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Saleem Malik; K. Jothimani – Education and Information Technologies, 2024
Monitoring students' academic progress is vital for ensuring timely completion of their studies and supporting at-risk students. Educational Data Mining (EDM) utilizes machine learning and feature selection to gain insights into student performance. However, many feature selection algorithms lack performance forecasting systems, limiting their…
Descriptors: Algorithms, Decision Making, At Risk Students, Learning Management Systems
Peer reviewed Peer reviewed
Direct linkDirect link
Tsiakmaki, Maria; Kostopoulos, Georgios; Kotsiantis, Sotiris; Ragos, Omiros – Journal of Computing in Higher Education, 2021
Predicting students' learning outcomes is one of the main topics of interest in the area of Educational Data Mining and Learning Analytics. To this end, a plethora of machine learning methods has been successfully applied for solving a variety of predictive problems. However, it is of utmost importance for both educators and data scientists to…
Descriptors: Active Learning, Predictor Variables, Academic Achievement, Learning Analytics
Nazempour, Rezvan – ProQuest LLC, 2023
Educational Data Mining (EDM) is an emerging field that aims to better understand students' behavior patterns and learning environments by employing statistical and machine learning methods to analyze large repositories of educational data. Analysis of variable data in the early stages of a course might be used to develop a comprehensive…
Descriptors: Artificial Intelligence, Outcomes of Education, Electronic Learning, Educational Environment
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Thomas Harvey; Donna Fong; Daryl Ann Borel; Johnny O’Connor – International Journal of Educational Leadership Preparation, 2025
This study explored the perceptions of principal candidates and their field supervisors regarding the impact of coherently sequenced practicum tasks on candidates' instructional leadership skills. The findings revealed that the quality of practicum experiences and the development of professional relationships between candidates and supervisors are…
Descriptors: Principals, Administrator Attitudes, Administrator Education, Supervisor Supervisee Relationship
Peer reviewed Peer reviewed
Direct linkDirect link
Ifenthaler, Dirk; Yau, Jane Yin-Kim – Educational Technology Research and Development, 2020
Study success includes the successful completion of a first degree in higher education to the largest extent, and the successful completion of individual learning tasks to the smallest extent. Factors affecting study success range from individual dispositions (e.g., motivation, prior academic performance) to characteristics of the educational…
Descriptors: Learning Analytics, Higher Education, Educational Research, Academic Achievement
Peer reviewed Peer reviewed
Direct linkDirect link
Abdelhafez, Hoda Ahmed; Elmannai, Hela – International Journal of Information and Communication Technology Education, 2022
Learning data analytics improves the learning field in higher education using educational data for extracting useful patterns and making better decisions. Identifying potential at-risk students may help instructors and academic guidance to improve the students' performance and the achievement of learning outcomes. The aim of this research study is…
Descriptors: Learning Analytics, Mathematics, Prediction, Academic Achievement
Peer reviewed Peer reviewed
Direct linkDirect link
Ouyang, Fan; Wu, Mian; Zheng, Luyi; Zhang, Liyin; Jiao, Pengcheng – International Journal of Educational Technology in Higher Education, 2023
As a cutting-edge field of artificial intelligence in education (AIEd) that depends on advanced computing technologies, AI performance prediction model is widely used to identify at-risk students that tend to fail, establish student-centered learning pathways, and optimize instructional design and development. A majority of the existing AI…
Descriptors: Technology Integration, Artificial Intelligence, Performance, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Foster, Ed; Siddle, Rebecca – Assessment & Evaluation in Higher Education, 2020
In this article we investigate the effectiveness of learning analytics for identifying at-risk students in higher education institutions using data output from an in-situ learning analytics platform. Amongst other things, the platform generates 'no-engagement' alerts if students have not engaged with any of the data sources measured for 14…
Descriptors: Learning Analytics, At Risk Students, Identification, Higher Education
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Anna Y. Q.; Lu, Owen H. T.; Huang, Jeff C. H.; Yin, C. J.; Yang, Stephen J. H. – Interactive Learning Environments, 2020
In order to enhance the experience of learning, many educators applied learning analytics in a classroom, the major principle of learning analytics is targeting at-risk student and given timely intervention according to the results of student behavior analysis. However, when researchers applied machine learning to train a risk identifying model,…
Descriptors: Academic Achievement, Data Use, Learning Analytics, Classification
Previous Page | Next Page »
Pages: 1  |  2