Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 4 |
Since 2006 (last 20 years) | 4 |
Descriptor
Academic Achievement | 4 |
Learning Analytics | 4 |
Foreign Countries | 2 |
Learning Processes | 2 |
Prediction | 2 |
Student Attitudes | 2 |
Undergraduate Students | 2 |
Artificial Intelligence | 1 |
Behavior Patterns | 1 |
Bias | 1 |
Classification | 1 |
More ▼ |
Source
International Association for… | 4 |
Publication Type
Speeches/Meeting Papers | 4 |
Reports - Research | 3 |
Information Analyses | 1 |
Education Level
Higher Education | 3 |
Postsecondary Education | 3 |
Audience
Location
Europe | 1 |
Netherlands | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Plintz, Nicolai; Ifenthaler, Dirk – International Association for Development of the Information Society, 2023
Emotions are vital to learning success, especially in online learning environments. They make the difference between learning success and failure. Unfortunately, learners' emotional state is still rarely considered in online learning and teaching, although it is an important driver of learning success. This paper reports a work-in-progress…
Descriptors: Online Courses, Academic Achievement, Emotional Experience, Measurement
Sahin, Muhittin; Ifenthaler, Dirk – International Association for Development of the Information Society, 2022
Within digitally-supported learning environments, learners need to observe themselves so that they can reflect on their strengths and weaknesses and take a step toward autonomous learning. Within the scope of this research, a technology and analytics enhanced assessment environment in which students can assess themselves was implemented and…
Descriptors: Foreign Countries, College Students, Behavior Patterns, Learning Processes
Zualkernan, Imran – International Association for Development of the Information Society, 2021
A significant amount of research has gone into predicting student performance and many studies have been conducted to predict why students drop out. A variety of data including digital footprints, socio-economic data, financial data, and psychological aspects have been used to predict student performance at the test, course, or program level.…
Descriptors: Prediction, Engineering Education, Academic Achievement, Dropouts
Tempelaar, Dirk – International Association for Development of the Information Society, 2021
The search for rigor in learning analytics applications has placed survey data in the suspect's corner, favoring more objective trace data. A potential lack of objectivity in survey data is the existence of response styles, the tendency of respondents to answer survey items in a particular biased manner, such as yeah saying or always disagreeing.…
Descriptors: Learning Analytics, Responses, Surveys, Bias