NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 16 to 24 of 24 results Save | Export
Peer reviewed Peer reviewed
Gerbing, David W.; Hamilton, Janet G. – Structural Equation Modeling, 1996
A Monte Carlo study evaluated the effectiveness of different factor analysis extraction and rotation methods for identifying the known population multiple-indicator measurement model. Results demonstrate that exploratory factor analysis can contribute to a useful heuristic strategy for model specification prior to cross-validation with…
Descriptors: Heuristics, Mathematical Models, Measurement Techniques, Monte Carlo Methods
Peer reviewed Peer reviewed
Fan, Xitao; Wang, Lin; Thompson, Bruce – Structural Equation Modeling, 1999
A Monte Carlo simulation study investigated the effects on 10 structural equation modeling fit indexes of sample size, estimation method, and model specification. Some fit indexes did not appear to be comparable, and it was apparent that estimation method strongly influenced almost all fit indexes examined, especially for misspecified models. (SLD)
Descriptors: Estimation (Mathematics), Goodness of Fit, Monte Carlo Methods, Sample Size
Peer reviewed Peer reviewed
Jackson, Dennis L. – Structural Equation Modeling, 2001
Investigated the assumption that determining an adequate sample size in structural equation modeling can be aided by considering the number of parameters to be estimated. Findings from maximum likelihood confirmatory factor analysis support previous research on the effect of sample size, measured variable reliability, and the number of measured…
Descriptors: Estimation (Mathematics), Maximum Likelihood Statistics, Monte Carlo Methods, Reliability
Peer reviewed Peer reviewed
Direct linkDirect link
Lei, Pui-Wa; Dunbar, Stephen B. – Structural Equation Modeling, 2004
The primary purpose of this study was to examine relative performance of 2 power estimation methods in structural equation modeling. Sample size, alpha level, type of manifest variable, type of specification errors, and size of correlation between constructs were manipulated. Type 1 error rate of the model chi-square test, empirical critical…
Descriptors: Measures (Individuals), Structural Equation Models, Computation, Scores
Peer reviewed Peer reviewed
Olsson, Ulf Henning; Foss, Tron; Troye, Sigurd V.; Howell, Roy D. – Structural Equation Modeling, 2000
Used simulation to demonstrate how the choice of estimation method affects indexes of fit and parameter bias for different sample sizes when nested models vary in terms of specification error and the data demonstrate different levels of kurtosis. Discusses results for maximum likelihood (ML), generalized least squares (GLS), and weighted least…
Descriptors: Estimation (Mathematics), Goodness of Fit, Least Squares Statistics, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Wang, Lin; And Others – Structural Equation Modeling, 1996
Actual kurtotic and skewed data and varied sample sizes and estimation methods demonstrated that normal theory maximum likelihood and generalized least square estimators were fairly consistent and almost identical. Standard errors tended to underestimate the estimator's true variation but the problem was not serious for large samples. (SLD)
Descriptors: Error of Measurement, Estimation (Mathematics), Goodness of Fit, Least Squares Statistics
Peer reviewed Peer reviewed
Bandalos, Deborah L. – Structural Equation Modeling, 1997
Monte Carlo methods were used to study the accuracy and utility of estimators of overall error and error due to approximation in structural equation modeling. Effects of sample size, indicator reliabilities, and degree of misspecification were examined. The rescaled noncentrality parameter also was examined. Choosing among competing models is…
Descriptors: Comparative Analysis, Error of Measurement, Estimation (Mathematics), Monte Carlo Methods
Peer reviewed Peer reviewed
Finch, John F.; And Others – Structural Equation Modeling, 1997
A Monte Carlo approach was used to examine bias in the estimation of indirect effects and their associated standard errors. Results illustrate the adverse effects of nonnormality on the accuracy of significance tests in latent variable models estimated using normal theory maximum likelihood statistics. (SLD)
Descriptors: Error of Measurement, Estimation (Mathematics), Maximum Likelihood Statistics, Monte Carlo Methods
Peer reviewed Peer reviewed
Anderson, Ronald D. – Structural Equation Modeling, 1996
Goodness of fit indexes developed by R. P. McDonald (1989) and Satorra-Bentler scale correction methods (A. Satorra and P. M. Bentler, 1988) were studied. The Satorra-Bentler index is shown to have the least error under each distributional misspecification level when the model has correct structural specification. (SLD)
Descriptors: Error of Measurement, Estimation (Mathematics), Goodness of Fit, Maximum Likelihood Statistics
« Previous Page | Next Page
Pages: 1  |  2