Descriptor
Source
| Structural Equation Modeling | 3 |
Publication Type
| Journal Articles | 3 |
| Reports - Evaluative | 2 |
| Reports - Research | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Peer reviewedJedidi, Kamel; And Others – Structural Equation Modeling, 1996
An Expectation-Maximization (EM) algorithm in a maximum likelihood framework is developed to estimate finite mixtures of multivariate regression and simultaneous equation models with multiple endogenous variables. A dataset with cross-sectional observations for a diverse sample of businesses illustrates the semiparametric approach. (SLD)
Descriptors: Estimation (Mathematics), Maximum Likelihood Statistics, Multivariate Analysis, Regression (Statistics)
Peer reviewedHamaker, Ellen L.; Dolan, Conor V.; Molenaar, Peter C. M. – Structural Equation Modeling, 2002
Reexamined the nature of structural equation modeling (SEM) estimates of autoregressive moving average (ARMA) models, replicated the simulation experiments of P. Molenaar, and examined the behavior of the log-likelihood ratio test. Simulation studies indicate that estimates of ARMA parameters observed with SEM software are identical to those…
Descriptors: Maximum Likelihood Statistics, Regression (Statistics), Simulation, Structural Equation Models
Peer reviewedMcQuitty, Shaun – Structural Equation Modeling, 1997
LISREL 8 invokes a ridge option when maximum likelihood or generalized least squares are used to estimate a structural equation model with a nonpositive definite covariance or correlation matrix. Implications of the ridge option for model fit, parameter estimates, and standard errors are explored through two examples. (SLD)
Descriptors: Error of Measurement, Estimation (Mathematics), Goodness of Fit, Least Squares Statistics


