NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 9 results Save | Export
Peer reviewed Peer reviewed
Coenders, Germa; Saris, Willem E.; Satorra, Albert – Structural Equation Modeling, 1997
A Monte Carlo study is reported that shows the comparative performance of alternative approaches under deviations from their respective assumptions in the case of structural equation models with latent variables with attention restricted to point estimates of model parameters. The conditional polychoric correlations method is shown most robust…
Descriptors: Estimation (Mathematics), Monte Carlo Methods, Structural Equation Models
Peer reviewed Peer reviewed
Coenders, Germa; Saris, Willem E.; Batista-Foguet, Joan M.; Andreenkova, Anna – Structural Equation Modeling, 1999
Illustrates that sampling variance can be very large when a three-wave quasi simplex model is used to obtain reliability estimates. Also shows that, for the reliability parameter to be identified, the model assumes a Markov process. These problems are evaluated with both real and Monte Carlo data. (SLD)
Descriptors: Estimation (Mathematics), Markov Processes, Monte Carlo Methods, Reliability
Peer reviewed Peer reviewed
Olmos, Antonio; Hutchinson, Susan R. – Structural Equation Modeling, 1998
The behavior of eight measures of fit used to evaluate confirmatory factor analysis models was studied through Monte Carlo simulation to determine the extent to which sample size, model size, estimation procedure, and level of nonnormality affect fit when analyzing polytomous data. Implications of results for evaluating fit are discussed. (SLD)
Descriptors: Estimation (Mathematics), Goodness of Fit, Monte Carlo Methods, Sample Size
Peer reviewed Peer reviewed
Oczkowski, Edward – Structural Equation Modeling, 2002
Proposes the use of nonnested tests for the two stage least squares (2SLS) estimator of latent variable models to discriminate between scales. Compares the finite sample performance of these tests to structural equation modeling information-based criteria. Presents practical recommendations based on the Monte Carlo analysis. (SLD)
Descriptors: Estimation (Mathematics), Least Squares Statistics, Monte Carlo Methods, Structural Equation Models
Peer reviewed Peer reviewed
Chin, Wynne W. – Structural Equation Modeling, 1996
The SEPATH structural equation modeling (SEM) software is a new module in the latest release of STATISTICA (version 5.0) for Windows 3.1 and Windows 95. SEPATH is a program that provides a comprehensive set of functions for the SEM modeling. The interface and the Monte Carlo capability are strong features. (SLD)
Descriptors: Computer Interfaces, Computer Software, Data Analysis, Estimation (Mathematics)
Peer reviewed Peer reviewed
Fan, Xitao; Wang, Lin; Thompson, Bruce – Structural Equation Modeling, 1999
A Monte Carlo simulation study investigated the effects on 10 structural equation modeling fit indexes of sample size, estimation method, and model specification. Some fit indexes did not appear to be comparable, and it was apparent that estimation method strongly influenced almost all fit indexes examined, especially for misspecified models. (SLD)
Descriptors: Estimation (Mathematics), Goodness of Fit, Monte Carlo Methods, Sample Size
Peer reviewed Peer reviewed
Jackson, Dennis L. – Structural Equation Modeling, 2001
Investigated the assumption that determining an adequate sample size in structural equation modeling can be aided by considering the number of parameters to be estimated. Findings from maximum likelihood confirmatory factor analysis support previous research on the effect of sample size, measured variable reliability, and the number of measured…
Descriptors: Estimation (Mathematics), Maximum Likelihood Statistics, Monte Carlo Methods, Reliability
Peer reviewed Peer reviewed
Bandalos, Deborah L. – Structural Equation Modeling, 1997
Monte Carlo methods were used to study the accuracy and utility of estimators of overall error and error due to approximation in structural equation modeling. Effects of sample size, indicator reliabilities, and degree of misspecification were examined. The rescaled noncentrality parameter also was examined. Choosing among competing models is…
Descriptors: Comparative Analysis, Error of Measurement, Estimation (Mathematics), Monte Carlo Methods
Peer reviewed Peer reviewed
Finch, John F.; And Others – Structural Equation Modeling, 1997
A Monte Carlo approach was used to examine bias in the estimation of indirect effects and their associated standard errors. Results illustrate the adverse effects of nonnormality on the accuracy of significance tests in latent variable models estimated using normal theory maximum likelihood statistics. (SLD)
Descriptors: Error of Measurement, Estimation (Mathematics), Maximum Likelihood Statistics, Monte Carlo Methods