Descriptor
| Correlation | 3 |
| Sample Size | 3 |
| Simulation | 2 |
| Structural Equation Models | 2 |
| Comparative Analysis | 1 |
| Factor Structure | 1 |
| Monte Carlo Methods | 1 |
Source
| Structural Equation Modeling | 3 |
Publication Type
| Journal Articles | 3 |
| Reports - Descriptive | 1 |
| Reports - Evaluative | 1 |
| Reports - Research | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Peer reviewedJulian, Marc W. – Structural Equation Modeling, 2001
Examined the effects of ignoring multilevel data structures in nonhierarchical covariance modeling using a Monte Carlo simulation. Results suggest that when the magnitudes of intraclass correlations are less than 0.05 and the group size is small, the consequences of ignoring the data dependence within the multilevel data structures seem to be…
Descriptors: Correlation, Monte Carlo Methods, Sample Size, Simulation
Peer reviewedRaykov, Tenko; Marcoulides, George A. – Structural Equation Modeling, 2000
Outlines a method for comparing completely standardized solutions in multiple groups. The method is based on a correlation structure analysis of equal-size samples and uses the correlation distribution theory implemented in the structural equation modeling program RAMONA. (SLD)
Descriptors: Comparative Analysis, Correlation, Sample Size, Structural Equation Models
Peer reviewedLubke, Gitta H.; Dolan, Connor V. – Structural Equation Modeling, 2003
Simulation results show that the power to detect small mean differences when fitting a model with free residual variances across groups decreases as the difference in R squared increases. This decrease is more pronounced in the presence of correlated errors and if group sample sizes differ. (SLD)
Descriptors: Correlation, Factor Structure, Sample Size, Simulation


