Descriptor
Source
| Structural Equation Modeling | 4 |
Author
| Adamson, Gary | 1 |
| Bunting, Brendan P. | 1 |
| Fan, Xitao | 1 |
| Lautenschlager, Gary J. | 1 |
| Meade, Adam W. | 1 |
| Mulhall, Peter K. | 1 |
| Oczkowski, Edward | 1 |
| Thompson, Bruce | 1 |
| Wang, Lin | 1 |
Publication Type
| Journal Articles | 4 |
| Reports - Research | 4 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Peer reviewedBunting, Brendan P.; Adamson, Gary; Mulhall, Peter K. – Structural Equation Modeling, 2002
Studied planned incomplete data designs for the purpose of substantially reducing the amount of data required for multitrait-multimethod models. Simulations studied the effectiveness of Listwise Deletion, Pairwise Deletion, and the expectation maximization (EM) algorithm. Results indicate that EM is generally precise and efficient. (SLD)
Descriptors: Monte Carlo Methods, Multitrait Multimethod Techniques, Simulation
Peer reviewedOczkowski, Edward – Structural Equation Modeling, 2002
Proposes the use of nonnested tests for the two stage least squares (2SLS) estimator of latent variable models to discriminate between scales. Compares the finite sample performance of these tests to structural equation modeling information-based criteria. Presents practical recommendations based on the Monte Carlo analysis. (SLD)
Descriptors: Estimation (Mathematics), Least Squares Statistics, Monte Carlo Methods, Structural Equation Models
Meade, Adam W.; Lautenschlager, Gary J. – Structural Equation Modeling, 2004
In recent years, confirmatory factor analytic (CFA) techniques have become the most common method of testing for measurement equivalence/invariance (ME/I). However, no study has simulated data with known differences to determine how well these CFA techniques perform. This study utilizes data with a variety of known simulated differences in factor…
Descriptors: Factor Structure, Sample Size, Monte Carlo Methods, Evaluation Methods
Peer reviewedFan, Xitao; Wang, Lin; Thompson, Bruce – Structural Equation Modeling, 1999
A Monte Carlo simulation study investigated the effects on 10 structural equation modeling fit indexes of sample size, estimation method, and model specification. Some fit indexes did not appear to be comparable, and it was apparent that estimation method strongly influenced almost all fit indexes examined, especially for misspecified models. (SLD)
Descriptors: Estimation (Mathematics), Goodness of Fit, Monte Carlo Methods, Sample Size

Direct link
