NotesFAQContact Us
Collection
Advanced
Search Tips
Source
Structural Equation Modeling:…73
Audience
Researchers1
Location
Maryland1
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 61 to 73 of 73 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Yoon, Myeongsun; Millsap, Roger E. – Structural Equation Modeling: A Multidisciplinary Journal, 2007
In testing factorial invariance, researchers have often used a reference variable strategy in which the factor loading for a variable (i.e., reference variable) is fixed to 1 for identification. This commonly used method can be misleading if the chosen reference variable is actually a noninvariant item. This simulation study suggests an…
Descriptors: Item Analysis, Testing, Monte Carlo Methods, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Ciesla, Jeffrey A.; Cole, David A.; Steiger, James H. – Structural Equation Modeling: A Multidisciplinary Journal, 2007
Trait-State-Occasion (TSO) covariance models represent an important advance in methods for studying the longitudinal stability of latent constructs. Such models have only been examined under fairly restricted conditions (e.g., having only 2 tau-equivalent indicators per wave). In this study, Monte Carlo simulations revealed the effects of having 2…
Descriptors: Models, Item Response Theory, Monte Carlo Methods, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Cheung, Mike W. L. – Structural Equation Modeling: A Multidisciplinary Journal, 2007
Mediators are variables that explain the association between an independent variable and a dependent variable. Structural equation modeling (SEM) is widely used to test models with mediating effects. This article illustrates how to construct confidence intervals (CIs) of the mediating effects for a variety of models in SEM. Specifically, mediating…
Descriptors: Structural Equation Models, Probability, Intervals, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Fan, Xitao; Fan, Xiaotao – Structural Equation Modeling: A Multidisciplinary Journal, 2005
This article illustrates the use of the SAS system for Monte Carlo simulation work in structural equation modeling (SEM). Data generation procedures for both multivariate normal and nonnormal conditions are discussed, and relevant SAS codes for implementing these procedures are presented. A hypothetical example is presented in which Monte Carlo…
Descriptors: Monte Carlo Methods, Structural Equation Models, Simulation, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Nylund, Karen L.; Asparouhov, Tihomir; Muthen, Bengt O. – Structural Equation Modeling: A Multidisciplinary Journal, 2007
Mixture modeling is a widely applied data analysis technique used to identify unobserved heterogeneity in a population. Despite mixture models' usefulness in practice, one unresolved issue in the application of mixture models is that there is not one commonly accepted statistical indicator for deciding on the number of classes in a study…
Descriptors: Test Items, Monte Carlo Methods, Program Effectiveness, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Dolan, Conor; van der Sluis, Sophie; Grasman, Raoul – Structural Equation Modeling: A Multidisciplinary Journal, 2005
We consider power calculation in structural equation modeling with data missing completely at random (MCAR). Muth?n and Muth?n (2002) recently demonstrated how power calculations with data MCAR can be carried out by means of a Monte Carlo study. Here we show that the method of Satorra and Saris (1985), which is based on the nonnull distribution of…
Descriptors: Computation, Monte Carlo Methods, Structural Equation Models, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Herzog, Walter; Boomsma, Anne; Reinecke, Sven – Structural Equation Modeling: A Multidisciplinary Journal, 2007
According to Kenny and McCoach (2003), chi-square tests of structural equation models produce inflated Type I error rates when the degrees of freedom increase. So far, the amount of this bias in large models has not been quantified. In a Monte Carlo study of confirmatory factor models with a range of 48 to 960 degrees of freedom it was found that…
Descriptors: Monte Carlo Methods, Structural Equation Models, Effect Size, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Chen, Fang Fang – Structural Equation Modeling: A Multidisciplinary Journal, 2007
Two Monte Carlo studies were conducted to examine the sensitivity of goodness of fit indexes to lack of measurement invariance at 3 commonly tested levels: factor loadings, intercepts, and residual variances. Standardized root mean square residual (SRMR) appears to be more sensitive to lack of invariance in factor loadings than in intercepts or…
Descriptors: Geometric Concepts, Sample Size, Monte Carlo Methods, Goodness of Fit
Peer reviewed Peer reviewed
Direct linkDirect link
Lu, Irene R. R.; Thomas, D. Roland; Zumbo, Bruno D. – Structural Equation Modeling: A Multidisciplinary Journal, 2005
This article reviews the problems associated with using item response theory (IRT)-based latent variable scores for analytical modeling, discusses the connection between IRT and structural equation modeling (SEM)-based latent regression modeling for discrete data, and compares regression parameter estimates obtained using predicted IRT scores and…
Descriptors: Least Squares Statistics, Item Response Theory, Structural Equation Models, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Savalei, Victoria; Bentler, Peter M. – Structural Equation Modeling: A Multidisciplinary Journal, 2005
This article proposes a new approach to the statistical analysis of pairwisepresent covariance structure data. The estimator is based on maximizing the complete data likelihood function, and the associated test statistic and standard errors are corrected for misspecification using Satorra-Bentler corrections. A Monte Carlo study was conducted to…
Descriptors: Evaluation Methods, Maximum Likelihood Statistics, Statistical Analysis, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Alhija, Fadia Nasser-Abu; Wisenbaker, Joseph – Structural Equation Modeling: A Multidisciplinary Journal, 2006
A simulation study was conducted to examine the effect of item parceling on confirmatory factor analysis parameter estimates and their standard errors at different levels of sample size, number of indicators per factor, size of factor structure/pattern coefficients, magnitude of interfactor correlations, and variations in item-level data…
Descriptors: Monte Carlo Methods, Computation, Factor Analysis, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Gold, Michael S.; Bentler, Peter M.; Kim, Kevin H. – Structural Equation Modeling: A Multidisciplinary Journal, 2003
This article describes a Monte Carlo study of 2 methods for treating incomplete nonnormal data. Skewed, kurtotic data sets conforming to a single structured model, but varying in sample size, percentage of data missing, and missing-data mechanism, were produced. An asymptotically distribution-free available-case (ADFAC) method and structured-model…
Descriptors: Monte Carlo Methods, Computation, Sample Size, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Ximenez, Carmen – Structural Equation Modeling: A Multidisciplinary Journal, 2006
The recovery of weak factors has been extensively studied in the context of exploratory factor analysis. This article presents the results of a Monte Carlo simulation study of recovery of weak factor loadings in confirmatory factor analysis under conditions of estimation method (maximum likelihood vs. unweighted least squares), sample size,…
Descriptors: Monte Carlo Methods, Factor Analysis, Least Squares Statistics, Sample Size
« Previous Page | Next Page
Pages: 1  |  2  |  3  |  4  |  5