Publication Date
In 2025 | 1 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 7 |
Since 2016 (last 10 years) | 7 |
Since 2006 (last 20 years) | 21 |
Descriptor
Source
Structural Equation Modeling:… | 24 |
Author
Chunhua Cao | 2 |
Price, Larry R. | 2 |
Alhija, Fadia Nasser-Abu | 1 |
Beauducel, Andre | 1 |
Benjamin Lugu | 1 |
Bentler, Peter M. | 1 |
Boomsma, Anne | 1 |
Cheong, JeeWon | 1 |
Chin, Wynne W. | 1 |
Diep Nguyen | 1 |
Enders, Craig K. | 1 |
More ▼ |
Publication Type
Journal Articles | 24 |
Reports - Research | 15 |
Reports - Evaluative | 8 |
Reports - Descriptive | 1 |
Education Level
Grade 7 | 1 |
Junior High Schools | 1 |
Secondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Julia-Kim Walther; Martin Hecht; Steffen Zitzmann – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Small sample sizes pose a severe threat to convergence and accuracy of between-group level parameter estimates in multilevel structural equation modeling (SEM). However, in certain situations, such as pilot studies or when populations are inherently small, increasing samples sizes is not feasible. As a remedy, we propose a two-stage regularized…
Descriptors: Sample Size, Hierarchical Linear Modeling, Structural Equation Models, Matrices
Phillip K. Wood – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The logistic and confined exponential curves are frequently used in studies of growth and learning. These models, which are nonlinear in their parameters, can be estimated using structural equation modeling software. This paper proposes a single combined model, a weighted combination of both models. Mplus, Proc Calis, and lavaan code for the model…
Descriptors: Structural Equation Models, Computation, Computer Software, Weighted Scores
Chunhua Cao; Benjamin Lugu; Jujia Li – Structural Equation Modeling: A Multidisciplinary Journal, 2024
This study examined the false positive (FP) rates and sensitivity of Bayesian fit indices to structural misspecification in Bayesian structural equation modeling. The impact of measurement quality, sample size, model size, the magnitude of misspecified path effect, and the choice or prior on the performance of the fit indices was also…
Descriptors: Structural Equation Models, Bayesian Statistics, Measurement, Error of Measurement
Chunhua Cao; Xinya Liang – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Exploratory structural equation modeling (ESEM) allows for the estimation of all cross-loadings, which leads to the number of parameters estimated substantially greater than that in conventional SEM. This study examined the sensitivity of fit measures (CFI, RMSEA, AIC, BIC, SaBIC, LRT) to measurement noninvariance in ESEM. Results suggested that…
Descriptors: Structural Equation Models, Error of Measurement, Computation, Goodness of Fit
Haiyan Liu; Sarah Depaoli; Lydia Marvin – Structural Equation Modeling: A Multidisciplinary Journal, 2022
The deviance information criterion (DIC) is widely used to select the parsimonious, well-fitting model. We examined how priors impact model complexity (pD) and the DIC for Bayesian CFA. Study 1 compared the empirical distributions of pD and DIC under multivariate (i.e., inverse Wishart) and separation strategy (SS) priors. The former treats the…
Descriptors: Structural Equation Models, Bayesian Statistics, Goodness of Fit, Factor Analysis
Eunsook Kim; Diep Nguyen; Siyu Liu; Yan Wang – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Factor mixture modeling (FMM) is generally complex with both unobserved categorical and unobserved continuous variables. We explore the potential of item parceling to reduce the model complexity of FMM and improve convergence and class enumeration accordingly. To this end, we conduct Monte Carlo simulations with three types of data, continuous,…
Descriptors: Structural Equation Models, Factor Analysis, Factor Structure, Monte Carlo Methods
Xiaying Zheng; Ji Seung Yang; Jeffrey R. Harring – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Measuring change in an educational or psychological construct over time is often achieved by repeatedly administering the same items to the same examinees over time and fitting a second-order latent growth curve model. However, latent growth modeling with full information maximum likelihood (FIML) estimation becomes computationally challenging…
Descriptors: Longitudinal Studies, Data Analysis, Item Response Theory, Structural Equation Models
Savalei, Victoria – Structural Equation Modeling: A Multidisciplinary Journal, 2011
Categorical structural equation modeling (SEM) methods that fit the model to estimated polychoric correlations have become popular in the social sciences. When population thresholds are high in absolute value, contingency tables in small samples are likely to contain zero frequency cells. Such cells make the estimation of the polychoric…
Descriptors: Structural Equation Models, Correlation, Computation, Sample Size
Kim, Su-Young – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Just as growth mixture models are useful with single-phase longitudinal data, multiphase growth mixture models can be used with multiple-phase longitudinal data. One of the practically important issues in single- and multiphase growth mixture models is the sample size requirements for accurate estimation. In a Monte Carlo simulation study, the…
Descriptors: Structural Equation Models, Sample Size, Computation, Monte Carlo Methods
Cheong, JeeWon – Structural Equation Modeling: A Multidisciplinary Journal, 2011
The latent growth curve modeling (LGCM) approach has been increasingly utilized to investigate longitudinal mediation. However, little is known about the accuracy of the estimates and statistical power when mediation is evaluated in the LGCM framework. A simulation study was conducted to address these issues under various conditions including…
Descriptors: Structural Equation Models, Computation, Statistical Analysis, Sample Size
Price, Larry R. – Structural Equation Modeling: A Multidisciplinary Journal, 2012
The aim of this study was to compare the small sample (N = 1, 3, 5, 10, 15) performance of a Bayesian multivariate vector autoregressive (BVAR-SEM) time series model relative to frequentist power and parameter estimation bias. A multivariate autoregressive model was developed based on correlated autoregressive time series vectors of varying…
Descriptors: Sample Size, Time, Bayesian Statistics, Structural Equation Models
Henseler, Jorg; Chin, Wynne W. – Structural Equation Modeling: A Multidisciplinary Journal, 2010
In social and business sciences, the importance of the analysis of interaction effects between manifest as well as latent variables steadily increases. Researchers using partial least squares (PLS) to analyze interaction effects between latent variables need an overview of the available approaches as well as their suitability. This article…
Descriptors: Interaction, Least Squares Statistics, Computation, Prediction
Peugh, James L.; Enders, Craig K. – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Cluster sampling results in response variable variation both among respondents (i.e., within-cluster or Level 1) and among clusters (i.e., between-cluster or Level 2). Properly modeling within- and between-cluster variation could be of substantive interest in numerous settings, but applied researchers typically test only within-cluster (i.e.,…
Descriptors: Structural Equation Models, Monte Carlo Methods, Multivariate Analysis, Sampling
Sun, Ronghua; Willson, Victor L. – Structural Equation Modeling: A Multidisciplinary Journal, 2009
The effects of misspecifying intercept-covariate interactions in a 4 time-point latent growth model were the focus of this investigation. The investigation was motivated by school growth studies in which students' entry-level skills may affect their rate of growth. We studied the latent interaction of intercept and a covariate in predicting growth…
Descriptors: Investigations, Sample Size, Interaction, Computation
Herzog, Walter; Boomsma, Anne – Structural Equation Modeling: A Multidisciplinary Journal, 2009
Traditional estimators of fit measures based on the noncentral chi-square distribution (root mean square error of approximation [RMSEA], Steiger's [gamma], etc.) tend to overreject acceptable models when the sample size is small. To handle this problem, it is proposed to employ Bartlett's (1950), Yuan's (2005), or Swain's (1975) correction of the…
Descriptors: Intervals, Sample Size, Monte Carlo Methods, Computation
Previous Page | Next Page ยป
Pages: 1 | 2