NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Njål Foldnes; Jonas Moss; Steffen Grønneberg – Structural Equation Modeling: A Multidisciplinary Journal, 2025
We propose new ways of robustifying goodness-of-fit tests for structural equation modeling under non-normality. These test statistics have limit distributions characterized by eigenvalues whose estimates are highly unstable and biased in known directions. To take this into account, we design model-based trend predictions to approximate the…
Descriptors: Goodness of Fit, Structural Equation Models, Robustness (Statistics), Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Dan Wei; Peida Zhan; Hongyun Liu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
In latent growth curve modeling (LGCM), overall fit indices have garnered increased disputation for model selection, and model fit evaluation based on the mean structure has becoming popularity. The present study developed a versatile fit index, named Weighted Root Mean Squared Errors (WRMSE), based on individual case residuals (ICRs) with the aim…
Descriptors: Structural Equation Models, Goodness of Fit, Error of Measurement, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Zsuzsa Bakk; Roberto Di Mari; Jennifer Oser; Jouni Kuha – Structural Equation Modeling: A Multidisciplinary Journal, 2022
In this article, we present a two-stage estimation approach applied to multilevel latent class analysis (LCA) with covariates. We separate the estimation of the measurement and structural model. This makes the extension of the structural model computationally efficient. We investigate the robustness against misspecifications of the proposed…
Descriptors: Multivariate Analysis, Hierarchical Linear Modeling, Computation, Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Xiao Liu; Lijuan Wang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
In parallel process latent growth curve mediation models, the mediation pathways from treatment to the intercept or slope of outcome through the intercept or slope of mediator are often of interest. In this study, we developed causal mediation analysis methods for these mediation pathways. Particularly, we provided causal definitions and…
Descriptors: Causal Models, Mediation Theory, Psychological Studies, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Hongxi Li; Shuwei Li; Liuquan Sun; Xinyuan Song – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Structural equation models offer a valuable tool for delineating the complicated interrelationships among multiple variables, including observed and latent variables. Over the last few decades, structural equation models have successfully analyzed complete and right-censored survival data, exemplified by wide applications in psychological, social,…
Descriptors: Statistical Analysis, Statistical Studies, Structural Equation Models, Intervals
Peer reviewed Peer reviewed
Direct linkDirect link
Ke-Hai Yuan; Ling Ling; Zhiyong Zhang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Data in social and behavioral sciences typically contain measurement errors and do not have predefined metrics. Structural equation modeling (SEM) is widely used for the analysis of such data, where the scales of the manifest and latent variables are often subjective. This article studies how the model, parameter estimates, their standard errors…
Descriptors: Structural Equation Models, Computation, Social Science Research, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Haiyan Liu; Sarah Depaoli; Lydia Marvin – Structural Equation Modeling: A Multidisciplinary Journal, 2022
The deviance information criterion (DIC) is widely used to select the parsimonious, well-fitting model. We examined how priors impact model complexity (pD) and the DIC for Bayesian CFA. Study 1 compared the empirical distributions of pD and DIC under multivariate (i.e., inverse Wishart) and separation strategy (SS) priors. The former treats the…
Descriptors: Structural Equation Models, Bayesian Statistics, Goodness of Fit, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Eunsook Kim; Diep Nguyen; Siyu Liu; Yan Wang – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Factor mixture modeling (FMM) is generally complex with both unobserved categorical and unobserved continuous variables. We explore the potential of item parceling to reduce the model complexity of FMM and improve convergence and class enumeration accordingly. To this end, we conduct Monte Carlo simulations with three types of data, continuous,…
Descriptors: Structural Equation Models, Factor Analysis, Factor Structure, Monte Carlo Methods