Publication Date
In 2025 | 1 |
Since 2024 | 4 |
Since 2021 (last 5 years) | 5 |
Since 2016 (last 10 years) | 5 |
Since 2006 (last 20 years) | 11 |
Descriptor
Computation | 11 |
Equations (Mathematics) | 11 |
Structural Equation Models | 8 |
Simulation | 6 |
Correlation | 4 |
Statistical Analysis | 3 |
Error of Measurement | 2 |
Evaluation | 2 |
Factor Analysis | 2 |
Interaction | 2 |
Intervals | 2 |
More ▼ |
Source
Structural Equation Modeling:… | 11 |
Author
Aiken, Leona S. | 1 |
Alexander Robitzsch | 1 |
Amemiya, Yasuo | 1 |
Cham, Heining | 1 |
Cheung, Mike W. -L. | 1 |
Chunhua Cao | 1 |
Daniel Seddig | 1 |
Hamaker, Ellen L. | 1 |
Hu, Fu-Chang | 1 |
Jongerling, Joran | 1 |
Kelava, Augustin | 1 |
More ▼ |
Publication Type
Journal Articles | 11 |
Reports - Research | 6 |
Reports - Descriptive | 4 |
Reports - Evaluative | 1 |
Education Level
Grade 7 | 1 |
Junior High Schools | 1 |
Secondary Education | 1 |
Audience
Location
Netherlands | 1 |
Singapore | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Alexander Robitzsch; Oliver Lüdtke – Structural Equation Modeling: A Multidisciplinary Journal, 2025
The random intercept cross-lagged panel model (RICLPM) decomposes longitudinal associations between two processes X and Y into stable between-person associations and temporal within-person changes. In a recent study, Bailey et al. demonstrated through a simulation study that the between-person variance components in the RICLPM can occur only due…
Descriptors: Longitudinal Studies, Correlation, Time, Simulation
Sara Dhaene; Yves Rosseel – Structural Equation Modeling: A Multidisciplinary Journal, 2024
In confirmatory factor analysis (CFA), model parameters are usually estimated by iteratively minimizing the Maximum Likelihood (ML) fit function. In optimal circumstances, the ML estimator yields the desirable statistical properties of asymptotic unbiasedness, efficiency, normality, and consistency. In practice, however, real-life data tend to be…
Descriptors: Factor Analysis, Factor Structure, Maximum Likelihood Statistics, Computation
Teague R. Henry; Zachary F. Fisher; Kenneth A. Bollen – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Model-Implied Instrumental Variable Two-Stage Least Squares (MIIV-2SLS) is a limited information, equation-by-equation, noniterative estimator for latent variable models. Associated with this estimator are equation-specific tests of model misspecification. One issue with equation-specific tests is that they lack specificity, in that they indicate…
Descriptors: Bayesian Statistics, Least Squares Statistics, Structural Equation Models, Equations (Mathematics)
Daniel Seddig – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The latent growth model (LGM) is a popular tool in the social and behavioral sciences to study development processes of continuous and discrete outcome variables. A special case are frequency measurements of behaviors or events, such as doctor visits per month or crimes committed per year. Probability distributions for such outcomes include the…
Descriptors: Growth Models, Statistical Analysis, Structural Equation Models, Crime
Chunhua Cao; Xinya Liang – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Exploratory structural equation modeling (ESEM) allows for the estimation of all cross-loadings, which leads to the number of parameters estimated substantially greater than that in conventional SEM. This study examined the sensitivity of fit measures (CFI, RMSEA, AIC, BIC, SaBIC, LRT) to measurement noninvariance in ESEM. Results suggested that…
Descriptors: Structural Equation Models, Error of Measurement, Computation, Goodness of Fit
Jongerling, Joran; Hamaker, Ellen L. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
This article shows that the mean and covariance structure of the predetermined autoregressive latent trajectory (ALT) model are very flexible. As a result, the shape of the modeled growth curve can be quite different from what one might expect at first glance. This is illustrated with several numerical examples that show that, for example, a…
Descriptors: Statistics, Structural Equation Models, Scores, Predictor Variables
Kelava, Augustin; Werner, Christina S.; Schermelleh-Engel, Karin; Moosbrugger, Helfried; Zapf, Dieter; Ma, Yue; Cham, Heining; Aiken, Leona S.; West, Stephen G. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
Interaction and quadratic effects in latent variable models have to date only rarely been tested in practice. Traditional product indicator approaches need to create product indicators (e.g., x[superscript 2] [subscript 1], x[subscript 1]x[subscript 4]) to serve as indicators of each nonlinear latent construct. These approaches require the use of…
Descriptors: Simulation, Computation, Evaluation, Predictor Variables
Cheung, Mike W. -L. – Structural Equation Modeling: A Multidisciplinary Journal, 2009
Confidence intervals (CIs) for parameters are usually constructed based on the estimated standard errors. These are known as Wald CIs. This article argues that likelihood-based CIs (CIs based on likelihood ratio statistics) are often preferred to Wald CIs. It shows how the likelihood-based CIs and the Wald CIs for many statistics and psychometric…
Descriptors: Intervals, Structural Equation Models, Simulation, Correlation
Sun, Ronghua; Willson, Victor L. – Structural Equation Modeling: A Multidisciplinary Journal, 2009
The effects of misspecifying intercept-covariate interactions in a 4 time-point latent growth model were the focus of this investigation. The investigation was motivated by school growth studies in which students' entry-level skills may affect their rate of growth. We studied the latent interaction of intercept and a covariate in predicting growth…
Descriptors: Investigations, Sample Size, Interaction, Computation
Raykov, Tenko; Amemiya, Yasuo – Structural Equation Modeling: A Multidisciplinary Journal, 2008
A structural equation modeling method for examining time-invariance of variable specificity in longitudinal studies with multiple measures is outlined, which is developed within a confirmatory factor-analytic framework. The approach represents a likelihood ratio test for the hypothesis of stability in the specificity part of the residual term…
Descriptors: Structural Equation Models, Longitudinal Studies, Computation, Time
Tsai, Tien-Lung; Shau, Wen-Yi; Hu, Fu-Chang – Structural Equation Modeling: A Multidisciplinary Journal, 2006
This article generalizes linear path analysis (PA) and simultaneous equations models (SiEM) to deal with mixed responses of different types in a recursive or triangular system. An efficient instrumental variable (IV) method for estimating the structural coefficients of a 2-equation partially recursive generalized path analysis (GPA) model and…
Descriptors: Structural Equation Models, Path Analysis, Simulation, Equations (Mathematics)