NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Phillip K. Wood – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The logistic and confined exponential curves are frequently used in studies of growth and learning. These models, which are nonlinear in their parameters, can be estimated using structural equation modeling software. This paper proposes a single combined model, a weighted combination of both models. Mplus, Proc Calis, and lavaan code for the model…
Descriptors: Structural Equation Models, Computation, Computer Software, Weighted Scores
Peer reviewed Peer reviewed
Direct linkDirect link
Evermann, Joerg – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Multiple-group analysis in covariance-based structural equation modeling (SEM) is an important technique to ensure the invariance of latent construct measurements and the validity of theoretical models across different subpopulations. However, not all SEM software packages provide multiple-group analysis capabilities. The sem package for the R…
Descriptors: Structural Equation Models, Computer Software, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Henseler, Jorg; Chin, Wynne W. – Structural Equation Modeling: A Multidisciplinary Journal, 2010
In social and business sciences, the importance of the analysis of interaction effects between manifest as well as latent variables steadily increases. Researchers using partial least squares (PLS) to analyze interaction effects between latent variables need an overview of the available approaches as well as their suitability. This article…
Descriptors: Interaction, Least Squares Statistics, Computation, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Herzog, Walter; Boomsma, Anne – Structural Equation Modeling: A Multidisciplinary Journal, 2009
Traditional estimators of fit measures based on the noncentral chi-square distribution (root mean square error of approximation [RMSEA], Steiger's [gamma], etc.) tend to overreject acceptable models when the sample size is small. To handle this problem, it is proposed to employ Bartlett's (1950), Yuan's (2005), or Swain's (1975) correction of the…
Descriptors: Intervals, Sample Size, Monte Carlo Methods, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Sik-Yum; Song, Xin-Yuan; Tang, Nian-Sheng – Structural Equation Modeling: A Multidisciplinary Journal, 2007
The analysis of interaction among latent variables has received much attention. This article introduces a Bayesian approach to analyze a general structural equation model that accommodates the general nonlinear terms of latent variables and covariates. This approach produces a Bayesian estimate that has the same statistical optimal properties as a…
Descriptors: Interaction, Structural Equation Models, Bayesian Statistics, Computation