NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Tueller, Stephen J.; Drotar, Scott; Lubke, Gitta H. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
The discrimination between alternative models and the detection of latent classes in the context of latent variable mixture modeling depends on sample size, class separation, and other aspects that are related to power. Prior to a mixture analysis it is useful to investigate model performance in a simulation study that reflects the research…
Descriptors: Simulation, Structural Equation Models, Statistical Analysis, Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Zhang, Zhiyong; Hamaker, Ellen L.; Nesselroade, John R. – Structural Equation Modeling: A Multidisciplinary Journal, 2008
Four methods for estimating a dynamic factor model, the direct autoregressive factor score (DAFS) model, are evaluated and compared. The first method estimates the DAFS model using a Kalman filter algorithm based on its state space model representation. The second one employs the maximum likelihood estimation method based on the construction of a…
Descriptors: Structural Equation Models, Simulation, Computer Software, Least Squares Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Asparouhov, Tihomir; Muthen, Bengt – Structural Equation Modeling: A Multidisciplinary Journal, 2009
Exploratory factor analysis (EFA) is a frequently used multivariate analysis technique in statistics. Jennrich and Sampson (1966) solved a significant EFA factor loading matrix rotation problem by deriving the direct Quartimin rotation. Jennrich was also the first to develop standard errors for rotated solutions, although these have still not made…
Descriptors: Structural Equation Models, Testing, Factor Analysis, Research Methodology