Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 1 |
Since 2006 (last 20 years) | 11 |
Descriptor
Source
Structural Equation Modeling:… | 13 |
Author
Publication Type
Journal Articles | 13 |
Reports - Research | 7 |
Reports - Evaluative | 5 |
Reports - Descriptive | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
National Longitudinal Study… | 1 |
What Works Clearinghouse Rating
Suyoung Kim; Sooyong Lee; Jiwon Kim; Tiffany A. Whittaker – Structural Equation Modeling: A Multidisciplinary Journal, 2024
This study aims to address a gap in the social and behavioral sciences literature concerning interaction effects between latent factors in multiple-group analysis. By comparing two approaches for estimating latent interactions within multiple-group analysis frameworks using simulation studies and empirical data, we assess their relative merits.…
Descriptors: Social Science Research, Behavioral Sciences, Structural Equation Models, Statistical Analysis
Lanza, Stephanie T.; Tan, Xianming; Bray, Bethany C. – Structural Equation Modeling: A Multidisciplinary Journal, 2013
Although prediction of class membership from observed variables in latent class analysis is well understood, predicting an observed distal outcome from latent class membership is more complicated. A flexible model-based approach is proposed to empirically derive and summarize the class-dependent density functions of distal outcomes with…
Descriptors: Structural Equation Models, Monte Carlo Methods, Comparative Analysis, Statistical Analysis
Song, Xin-Yuan; Xia, Ye-Mao; Pan, Jun-Hao; Lee, Sik-Yum – Structural Equation Modeling: A Multidisciplinary Journal, 2011
Structural equation models have wide applications. One of the most important issues in analyzing structural equation models is model comparison. This article proposes a Bayesian model comparison statistic, namely the "L[subscript nu]"-measure for both semiparametric and parametric structural equation models. For illustration purposes, we consider…
Descriptors: Structural Equation Models, Bayesian Statistics, Comparative Analysis, Computation
Lin, Guan-Chyun; Wen, Zhonglin; Marsh, Herbert W.; Lin, Huey-Shyan – Structural Equation Modeling: A Multidisciplinary Journal, 2010
The purpose of this investigation is to compare a new (double-mean-centering) strategy to estimating latent interactions in structural equation models with the (single) mean-centering strategy (Marsh, Wen, & Hau, 2004, 2006) and the orthogonalizing strategy (Little, Bovaird, & Widaman, 2006; Marsh et al., 2007). A key benefit of the…
Descriptors: Structural Equation Models, Methods, Interaction, Computation
DeMars, Christine E. – Structural Equation Modeling: A Multidisciplinary Journal, 2012
In structural equation modeling software, either limited-information (bivariate proportions) or full-information item parameter estimation routines could be used for the 2-parameter item response theory (IRT) model. Limited-information methods assume the continuous variable underlying an item response is normally distributed. For skewed and…
Descriptors: Item Response Theory, Structural Equation Models, Computation, Computer Software
Equivalence and Differences between Structural Equation Modeling and State-Space Modeling Techniques
Chow, Sy-Miin; Ho, Moon-ho R.; Hamaker, Ellen L.; Dolan, Conor V. – Structural Equation Modeling: A Multidisciplinary Journal, 2010
State-space modeling techniques have been compared to structural equation modeling (SEM) techniques in various contexts but their unique strengths have often been overshadowed by their similarities to SEM. In this article, we provide a comprehensive discussion of these 2 approaches' similarities and differences through analytic comparisons and…
Descriptors: Structural Equation Models, Differences, Statistical Analysis, Models
Raykov, Tenko; Marcoulides, George A. – Structural Equation Modeling: A Multidisciplinary Journal, 2010
A latent variable modeling approach for examining population similarities and differences in observed variable relationship and mean indexes in incomplete data sets is discussed. The method is based on the full information maximum likelihood procedure of model fitting and parameter estimation. The procedure can be employed to test group identities…
Descriptors: Models, Comparative Analysis, Groups, Maximum Likelihood Statistics
Forero, Carlos G.; Maydeu-Olivares, Alberto; Gallardo-Pujol, David – Structural Equation Modeling: A Multidisciplinary Journal, 2009
Factor analysis models with ordinal indicators are often estimated using a 3-stage procedure where the last stage involves obtaining parameter estimates by least squares from the sample polychoric correlations. A simulation study involving 324 conditions (1,000 replications per condition) was performed to compare the performance of diagonally…
Descriptors: Factor Analysis, Models, Least Squares Statistics, Computation
Wang, Lijuan; McArdle, John J. – Structural Equation Modeling: A Multidisciplinary Journal, 2008
The main purpose of this research is to evaluate the performance of a Bayesian approach for estimating unknown change points using Monte Carlo simulations. The univariate and bivariate unknown change point mixed models were presented and the basic idea of the Bayesian approach for estimating the models was discussed. The performance of Bayesian…
Descriptors: Simulation, Bayesian Statistics, Comparative Analysis, Computation
Leite, Walter L. – Structural Equation Modeling: A Multidisciplinary Journal, 2007
Univariate latent growth modeling (LGM) of composites of multiple items (e.g., item means or sums) has been frequently used to analyze the growth of latent constructs. This study evaluated whether LGM of composites yields unbiased parameter estimates, standard errors, chi-square statistics, and adequate fit indexes. Furthermore, LGM was compared…
Descriptors: Comparative Analysis, Computation, Structural Equation Models, Goodness of Fit
Beauducel, Andre; Herzberg, Philipp Yorck – Structural Equation Modeling: A Multidisciplinary Journal, 2006
This simulation study compared maximum likelihood (ML) estimation with weighted least squares means and variance adjusted (WLSMV) estimation. The study was based on confirmatory factor analyses with 1, 2, 4, and 8 factors, based on 250, 500, 750, and 1,000 cases, and on 5, 10, 20, and 40 variables with 2, 3, 4, 5, and 6 categories. There was no…
Descriptors: Factor Analysis, Maximum Likelihood Statistics, Classification, Sample Size
Beauducel, Andre; Wittmann, Werner W. – Structural Equation Modeling: A Multidisciplinary Journal, 2005
Fit indexes were compared with respect to a specific type of model misspecification. Simple structure was violated with some secondary loadings that were present in the true models that were not specified in the estimated models. The c2 test, Comparative Fit Index, Goodness-of-Fit Index, Incremental Fit Index, Nonnormed Fit Index, root mean…
Descriptors: Comparative Analysis, Personality Traits, Simulation, Goodness of Fit
Gold, Michael S.; Bentler, Peter M.; Kim, Kevin H. – Structural Equation Modeling: A Multidisciplinary Journal, 2003
This article describes a Monte Carlo study of 2 methods for treating incomplete nonnormal data. Skewed, kurtotic data sets conforming to a single structured model, but varying in sample size, percentage of data missing, and missing-data mechanism, were produced. An asymptotically distribution-free available-case (ADFAC) method and structured-model…
Descriptors: Monte Carlo Methods, Computation, Sample Size, Comparative Analysis