Publication Date
In 2025 | 0 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 3 |
Since 2006 (last 20 years) | 7 |
Descriptor
Classification | 7 |
Computation | 7 |
Structural Equation Models | 5 |
Error of Measurement | 4 |
Goodness of Fit | 4 |
Longitudinal Studies | 2 |
Sample Size | 2 |
Simulation | 2 |
Accuracy | 1 |
Aging (Individuals) | 1 |
Bayesian Statistics | 1 |
More ▼ |
Source
Structural Equation Modeling:… | 7 |
Author
Bandalos, Deborah L. | 1 |
Beauducel, Andre | 1 |
Benjamin Lugu | 1 |
C. J. Van Lissa | 1 |
Chunhua Cao | 1 |
D. Anadria | 1 |
Dan Wei | 1 |
Depaoli, Sarah | 1 |
Herzberg, Philipp Yorck | 1 |
Hongyun Liu | 1 |
Jujia Li | 1 |
More ▼ |
Publication Type
Journal Articles | 7 |
Reports - Evaluative | 4 |
Reports - Research | 3 |
Education Level
Audience
Teachers | 1 |
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
C. J. Van Lissa; M. Garnier-Villarreal; D. Anadria – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Latent class analysis (LCA) refers to techniques for identifying groups in data based on a parametric model. Examples include mixture models, LCA with ordinal indicators, and latent class growth analysis. Despite its popularity, there is limited guidance with respect to decisions that must be made when conducting and reporting LCA. Moreover, there…
Descriptors: Multivariate Analysis, Structural Equation Models, Open Source Technology, Computation
Dan Wei; Peida Zhan; Hongyun Liu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
In latent growth curve modeling (LGCM), overall fit indices have garnered increased disputation for model selection, and model fit evaluation based on the mean structure has becoming popularity. The present study developed a versatile fit index, named Weighted Root Mean Squared Errors (WRMSE), based on individual case residuals (ICRs) with the aim…
Descriptors: Structural Equation Models, Goodness of Fit, Error of Measurement, Computation
Chunhua Cao; Benjamin Lugu; Jujia Li – Structural Equation Modeling: A Multidisciplinary Journal, 2024
This study examined the false positive (FP) rates and sensitivity of Bayesian fit indices to structural misspecification in Bayesian structural equation modeling. The impact of measurement quality, sample size, model size, the magnitude of misspecified path effect, and the choice or prior on the performance of the fit indices was also…
Descriptors: Structural Equation Models, Bayesian Statistics, Measurement, Error of Measurement
Kaplan, David; Depaoli, Sarah – Structural Equation Modeling: A Multidisciplinary Journal, 2011
This article examines the problem of specification error in 2 models for categorical latent variables; the latent class model and the latent Markov model. Specification error in the latent class model focuses on the impact of incorrectly specifying the number of latent classes of the categorical latent variable on measures of model adequacy as…
Descriptors: Markov Processes, Longitudinal Studies, Probability, Item Response Theory
Tueller, Stephen; Lubke, Gitta – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Structural equation mixture models (SEMMs) are latent class models that permit the estimation of a structural equation model within each class. Fitting SEMMs is illustrated using data from 1 wave of the Notre Dame Longitudinal Study of Aging. Based on the model used in the illustration, SEMM parameter estimation and correct class assignment are…
Descriptors: Structural Equation Models, Computation, Classification, Longitudinal Studies
Bandalos, Deborah L. – Structural Equation Modeling: A Multidisciplinary Journal, 2008
This study examined the efficacy of 4 different parceling methods for modeling categorical data with 2, 3, and 4 categories and with normal, moderately nonnormal, and severely nonnormal distributions. The parceling methods investigated were isolated parceling in which items were parceled with other items sharing the same source of variance, and…
Descriptors: Structural Equation Models, Computation, Goodness of Fit, Classification
Beauducel, Andre; Herzberg, Philipp Yorck – Structural Equation Modeling: A Multidisciplinary Journal, 2006
This simulation study compared maximum likelihood (ML) estimation with weighted least squares means and variance adjusted (WLSMV) estimation. The study was based on confirmatory factor analyses with 1, 2, 4, and 8 factors, based on 250, 500, 750, and 1,000 cases, and on 5, 10, 20, and 40 variables with 2, 3, 4, 5, and 6 categories. There was no…
Descriptors: Factor Analysis, Maximum Likelihood Statistics, Classification, Sample Size