Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 2 |
| Since 2017 (last 10 years) | 2 |
| Since 2007 (last 20 years) | 16 |
Descriptor
| Computation | 23 |
| Structural Equation Models | 17 |
| Error of Measurement | 8 |
| Sample Size | 8 |
| Monte Carlo Methods | 6 |
| Simulation | 6 |
| Statistical Analysis | 6 |
| Comparative Analysis | 5 |
| Computer Software | 5 |
| Correlation | 5 |
| Goodness of Fit | 5 |
| More ▼ | |
Source
| Structural Equation Modeling:… | 23 |
Author
| Bandalos, Deborah L. | 1 |
| Beauducel, Andre | 1 |
| Bentler, Peter M. | 1 |
| C. J. Van Lissa | 1 |
| Chin, Wynne W. | 1 |
| D. Anadria | 1 |
| Daniel L. Oberski | 1 |
| Dekovic, Maja | 1 |
| Depaoli, Sarah | 1 |
| Dolan, Conor | 1 |
| Enders, Craig K. | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 23 |
| Reports - Evaluative | 23 |
Education Level
| Grade 7 | 1 |
| Junior High Schools | 1 |
| Secondary Education | 1 |
Audience
| Teachers | 1 |
Location
| Netherlands | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
C. J. Van Lissa; M. Garnier-Villarreal; D. Anadria – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Latent class analysis (LCA) refers to techniques for identifying groups in data based on a parametric model. Examples include mixture models, LCA with ordinal indicators, and latent class growth analysis. Despite its popularity, there is limited guidance with respect to decisions that must be made when conducting and reporting LCA. Moreover, there…
Descriptors: Multivariate Analysis, Structural Equation Models, Open Source Technology, Computation
Erik-Jan van Kesteren; Daniel L. Oberski – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Structural equation modeling (SEM) is being applied to ever more complex data types and questions, often requiring extensions such as regularization or novel fitting functions. To extend SEM, researchers currently need to completely reformulate SEM and its optimization algorithm -- a challenging and time-consuming task. In this paper, we introduce…
Descriptors: Structural Equation Models, Computation, Graphs, Algorithms
Savalei, Victoria – Structural Equation Modeling: A Multidisciplinary Journal, 2011
Categorical structural equation modeling (SEM) methods that fit the model to estimated polychoric correlations have become popular in the social sciences. When population thresholds are high in absolute value, contingency tables in small samples are likely to contain zero frequency cells. Such cells make the estimation of the polychoric…
Descriptors: Structural Equation Models, Correlation, Computation, Sample Size
Kaplan, David; Depaoli, Sarah – Structural Equation Modeling: A Multidisciplinary Journal, 2011
This article examines the problem of specification error in 2 models for categorical latent variables; the latent class model and the latent Markov model. Specification error in the latent class model focuses on the impact of incorrectly specifying the number of latent classes of the categorical latent variable on measures of model adequacy as…
Descriptors: Markov Processes, Longitudinal Studies, Probability, Item Response Theory
Tueller, Stephen; Lubke, Gitta – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Structural equation mixture models (SEMMs) are latent class models that permit the estimation of a structural equation model within each class. Fitting SEMMs is illustrated using data from 1 wave of the Notre Dame Longitudinal Study of Aging. Based on the model used in the illustration, SEMM parameter estimation and correct class assignment are…
Descriptors: Structural Equation Models, Computation, Classification, Longitudinal Studies
Henseler, Jorg; Chin, Wynne W. – Structural Equation Modeling: A Multidisciplinary Journal, 2010
In social and business sciences, the importance of the analysis of interaction effects between manifest as well as latent variables steadily increases. Researchers using partial least squares (PLS) to analyze interaction effects between latent variables need an overview of the available approaches as well as their suitability. This article…
Descriptors: Interaction, Least Squares Statistics, Computation, Prediction
Raykov, Tenko; Marcoulides, George A. – Structural Equation Modeling: A Multidisciplinary Journal, 2010
A latent variable modeling approach for examining population similarities and differences in observed variable relationship and mean indexes in incomplete data sets is discussed. The method is based on the full information maximum likelihood procedure of model fitting and parameter estimation. The procedure can be employed to test group identities…
Descriptors: Models, Comparative Analysis, Groups, Maximum Likelihood Statistics
van de Schoot, Rens; Hoijtink, Herbert; Dekovic, Maja – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Researchers often have expectations that can be expressed in the form of inequality constraints among the parameters of a structural equation model. It is currently not possible to test these so-called informative hypotheses in structural equation modeling software. We offer a solution to this problem using M"plus." The hypotheses are…
Descriptors: Structural Equation Models, Computer Software, Hypothesis Testing, Statistical Analysis
Peugh, James L.; Enders, Craig K. – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Cluster sampling results in response variable variation both among respondents (i.e., within-cluster or Level 1) and among clusters (i.e., between-cluster or Level 2). Properly modeling within- and between-cluster variation could be of substantive interest in numerous settings, but applied researchers typically test only within-cluster (i.e.,…
Descriptors: Structural Equation Models, Monte Carlo Methods, Multivariate Analysis, Sampling
Sun, Ronghua; Willson, Victor L. – Structural Equation Modeling: A Multidisciplinary Journal, 2009
The effects of misspecifying intercept-covariate interactions in a 4 time-point latent growth model were the focus of this investigation. The investigation was motivated by school growth studies in which students' entry-level skills may affect their rate of growth. We studied the latent interaction of intercept and a covariate in predicting growth…
Descriptors: Investigations, Sample Size, Interaction, Computation
Song, Hairong; Ferrer, Emilio – Structural Equation Modeling: A Multidisciplinary Journal, 2009
This article presents a state-space modeling (SSM) technique for fitting process factor analysis models directly to raw data. The Kalman smoother via the expectation-maximization algorithm to obtain maximum likelihood parameter estimates is used. To examine the finite sample properties of the estimates in SSM when common factors are involved, a…
Descriptors: Factor Analysis, Computation, Mathematics, Maximum Likelihood Statistics
Forero, Carlos G.; Maydeu-Olivares, Alberto; Gallardo-Pujol, David – Structural Equation Modeling: A Multidisciplinary Journal, 2009
Factor analysis models with ordinal indicators are often estimated using a 3-stage procedure where the last stage involves obtaining parameter estimates by least squares from the sample polychoric correlations. A simulation study involving 324 conditions (1,000 replications per condition) was performed to compare the performance of diagonally…
Descriptors: Factor Analysis, Models, Least Squares Statistics, Computation
Zhang, Zhiyong; Hamaker, Ellen L.; Nesselroade, John R. – Structural Equation Modeling: A Multidisciplinary Journal, 2008
Four methods for estimating a dynamic factor model, the direct autoregressive factor score (DAFS) model, are evaluated and compared. The first method estimates the DAFS model using a Kalman filter algorithm based on its state space model representation. The second one employs the maximum likelihood estimation method based on the construction of a…
Descriptors: Structural Equation Models, Simulation, Computer Software, Least Squares Statistics
Bandalos, Deborah L. – Structural Equation Modeling: A Multidisciplinary Journal, 2008
This study examined the efficacy of 4 different parceling methods for modeling categorical data with 2, 3, and 4 categories and with normal, moderately nonnormal, and severely nonnormal distributions. The parceling methods investigated were isolated parceling in which items were parceled with other items sharing the same source of variance, and…
Descriptors: Structural Equation Models, Computation, Goodness of Fit, Classification
Lee, Sik-Yum; Song, Xin-Yuan; Tang, Nian-Sheng – Structural Equation Modeling: A Multidisciplinary Journal, 2007
The analysis of interaction among latent variables has received much attention. This article introduces a Bayesian approach to analyze a general structural equation model that accommodates the general nonlinear terms of latent variables and covariates. This approach produces a Bayesian estimate that has the same statistical optimal properties as a…
Descriptors: Interaction, Structural Equation Models, Bayesian Statistics, Computation
Previous Page | Next Page ยป
Pages: 1 | 2
Peer reviewed
Direct link
