Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 0 |
| Since 2017 (last 10 years) | 0 |
| Since 2007 (last 20 years) | 3 |
Descriptor
| Bayesian Statistics | 3 |
| Factor Analysis | 2 |
| Models | 2 |
| Monte Carlo Methods | 2 |
| Simulation | 2 |
| Censorship | 1 |
| Comparative Analysis | 1 |
| Computation | 1 |
| Computer Software | 1 |
| Evaluation Methods | 1 |
| Mediation Theory | 1 |
| More ▼ | |
Source
| Structural Equation Modeling:… | 3 |
Author
| Wang, Lijuan | 3 |
| McArdle, John J. | 2 |
| Zhang, Zhiyong | 2 |
| Hamagami, Fumiaki | 1 |
Publication Type
| Journal Articles | 3 |
| Reports - Research | 2 |
| Reports - Descriptive | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Wang, Lijuan; Zhang, Zhiyong – Structural Equation Modeling: A Multidisciplinary Journal, 2011
This study investigated influences of censored data on mediation analysis. Mediation effect estimates can be biased and inefficient with censoring on any one of the input, mediation, and output variables. A Bayesian Tobit approach was introduced to estimate and test mediation effects with censored data. Simulation results showed that the Bayesian…
Descriptors: Statistical Analysis, Mediation Theory, Censorship, Bayesian Statistics
Wang, Lijuan; McArdle, John J. – Structural Equation Modeling: A Multidisciplinary Journal, 2008
The main purpose of this research is to evaluate the performance of a Bayesian approach for estimating unknown change points using Monte Carlo simulations. The univariate and bivariate unknown change point mixed models were presented and the basic idea of the Bayesian approach for estimating the models was discussed. The performance of Bayesian…
Descriptors: Simulation, Bayesian Statistics, Comparative Analysis, Computation
Zhang, Zhiyong; McArdle, John J.; Wang, Lijuan; Hamagami, Fumiaki – Structural Equation Modeling: A Multidisciplinary Journal, 2008
Bayesian methods are becoming very popular despite some practical difficulties in implementation. To assist in the practical application of Bayesian methods, we show how to implement Bayesian analysis with WinBUGS as part of a standard set of SAS routines. This implementation procedure is first illustrated by fitting a multiple regression model…
Descriptors: Bayesian Statistics, Computer Software, Monte Carlo Methods, Multiple Regression Analysis

Peer reviewed
Direct link
