Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 0 |
| Since 2017 (last 10 years) | 0 |
| Since 2007 (last 20 years) | 2 |
Descriptor
| Longitudinal Studies | 2 |
| Monte Carlo Methods | 2 |
| Bias | 1 |
| Data | 1 |
| Data Analysis | 1 |
| Error of Measurement | 1 |
| Models | 1 |
| Structural Equation Models | 1 |
Source
| Structural Equation Modeling:… | 2 |
Author
| Kwok, Oi-Man | 2 |
| Luo, Wen | 2 |
| Chen, Qi | 1 |
| West, Stephen G. | 1 |
| Willson, Victor L. | 1 |
Publication Type
| Journal Articles | 2 |
| Reports - Research | 2 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Kwok, Oi-Man; Luo, Wen; West, Stephen G. – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Some nonlinear developmental phenomena can be represented by using a simple piecewise procedure in which 2 linear growth models are joined at a single knot. The major problem of using this piecewise approach is that researchers have to optimally locate the knot (or turning point) where the change in the growth rate occurs. A relatively simple way…
Descriptors: Monte Carlo Methods, Longitudinal Studies, Data, Structural Equation Models
Chen, Qi; Kwok, Oi-Man; Luo, Wen; Willson, Victor L. – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Growth mixture modeling (GMM) is a relatively new technique for analyzing longitudinal data. However, when applying GMM, researchers might assume that the higher level (nonrepeated measure) units (e.g., students) are independent from each other even though it might not always be true. This article reports the results of a simulation study…
Descriptors: Longitudinal Studies, Data Analysis, Models, Monte Carlo Methods

Peer reviewed
Direct link
