NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Jackman, M. Grace-Anne; Leite, Walter L.; Cochrane, David J. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
This Monte Carlo simulation study investigated methods of forming product indicators for the unconstrained approach for latent variable interaction estimation when the exogenous factors are measured by large and unequal numbers of indicators. Product indicators were created based on multiplying parcels of the larger scale by indicators of the…
Descriptors: Computation, Statistical Data, Structural Equation Models, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Leite, Walter L.; Sandbach, Robert; Jin, Rong; MacInnes, Jann W.; Jackman, M. Grace-Anne – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Because random assignment is not possible in observational studies, estimates of treatment effects might be biased due to selection on observable and unobservable variables. To strengthen causal inference in longitudinal observational studies of multiple treatments, we present 4 latent growth models for propensity score matched groups, and…
Descriptors: Structural Equation Models, Probability, Computation, Observation
Peer reviewed Peer reviewed
Direct linkDirect link
Leite, Walter L. – Structural Equation Modeling: A Multidisciplinary Journal, 2007
Univariate latent growth modeling (LGM) of composites of multiple items (e.g., item means or sums) has been frequently used to analyze the growth of latent constructs. This study evaluated whether LGM of composites yields unbiased parameter estimates, standard errors, chi-square statistics, and adequate fit indexes. Furthermore, LGM was compared…
Descriptors: Comparative Analysis, Computation, Structural Equation Models, Goodness of Fit