NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Koumara, Anna; Plakitsi, Katerina; Lederman, Norman – Science Teacher, 2022
How do scientists make inferences for something they cannot directly observe? The Black Box approach seems ideal to help students understand how scientists work. Black Boxes are sealed units; their interior is not accessible. The effort to determine their possible content (internal structure) demands successive modifications in hypothesis,…
Descriptors: Teaching Methods, Science Instruction, Electronic Equipment, Scientific Principles
Peer reviewed Peer reviewed
Direct linkDirect link
Cian, Heidi; Marshall, Jeff; Cook, Michelle – Science Teacher, 2019
The "Framework" (NRC 2012) and "Next Generation Science Standards" (NGSS Lead States 2013) require science teachers to think differently. Specifically, NGSS's performance expectations now require that three domains (disciplinary core ideas (DCI), crosscutting concepts (CCC), and scientific and engineering practices (SEP)) be…
Descriptors: Science Instruction, Teaching Methods, Standards, Science Teachers
Peer reviewed Peer reviewed
Direct linkDirect link
Marrero, Meghan E.; Lam, Keira – Science Teacher, 2014
Studies show that overall seafood consumption in the United States is rising (Agriculture and Agri-Food Canada 2012). Other research estimates that as much as 40% of the seafood caught worldwide is discarded, while countless sharks, whales, dolphins, birds, sea turtles, and other animals are unintentionally killed or injured by fishing gear…
Descriptors: Ichthyology, Classroom Techniques, Models, High School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Rittenburg, Rebecca; Miller, Brant G.; Rust, Cindy; Esler, Jamie; Kreider, Rusti; Boylan, Ryan; Squires, Audrey – Science Teacher, 2015
In a regional gathering called the Youth Water Summit, high school students present projects that respond to the driving question behind their science curriculum: "How can you address a significant water resource challenge in your community's watershed?" Students exhibit scientific posters, interactive presentations, films, art projects,…
Descriptors: High School Students, Student Projects, Active Learning, Exhibits
Peer reviewed Peer reviewed
Direct linkDirect link
Trauth-Nare, Amy; Buck, Gayle – Science Teacher, 2011
Due to the student-centered nature of problem-based learning (PBL) and project-based science (PBS), it is easy for teachers "not" to provide students with adequate feedback or enough support to promote critical thinking. However, research has shown that PBL and PBS are most effective when appropriate learning goals are defined, embedded supports…
Descriptors: Formative Evaluation, Problem Based Learning, Student Projects, Active Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Colley, Kabba – Science Teacher, 2008
Project-based science (PBS) instruction can simply be defined as a student-centered science teaching approach, in which students produce tangible learning outcomes by posing and answering research questions that are relevant to their own lives and communities. In a PBS classroom, students are encouraged to take responsibility for their own…
Descriptors: Science Projects, Learning Processes, Science Teachers, Science Instruction
Peer reviewed Peer reviewed
Uyeda, Steve; Madden, John; Brigham, Lindy A.; Luft, Julie A.; Washburne, Jim – Science Teacher, 2002
Describes problem based learning (PBL) as a science teaching approach that combines both school and real-world science. Explains how to design an ill-structured problem considering local, state, and national standards; finding and preparing data; implementing PBL in the classroom; and its benefits and student assessment. Includes an example of PBL…
Descriptors: Active Learning, Cooperative Learning, Experiential Learning, Problem Based Learning