NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 31 to 45 of 58 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Held, Leonhard; Matthews, Robert; Ott, Manuela; Pawel, Samuel – Research Synthesis Methods, 2022
It is now widely accepted that the standard inferential toolkit used by the scientific research community--null-hypothesis significance testing (NHST)--is not fit for purpose. Yet despite the threat posed to the scientific enterprise, there is no agreement concerning alternative approaches for evidence assessment. This lack of consensus reflects…
Descriptors: Bayesian Statistics, Statistical Inference, Hypothesis Testing, Credibility
Peer reviewed Peer reviewed
Direct linkDirect link
Piepho, Hans-Peter; Madden, Laurence V. – Research Synthesis Methods, 2022
Network meta-analysis is a popular method to synthesize the information obtained in a systematic review of studies (e.g., randomized clinical trials) involving subsets of multiple treatments of interest. The dominant method of analysis employs within-study information on treatment contrasts and integrates this over a network of studies. One…
Descriptors: Medical Research, Meta Analysis, Networks, Drug Therapy
Peer reviewed Peer reviewed
Direct linkDirect link
van Zundert, Camiel H. J.; Miocevic, Milica – Research Synthesis Methods, 2020
Synthesizing findings about the indirect (mediated) effect plays an important role in determining the mechanism through which variables affect one another. This simulation study compared six methods for synthesizing indirect effects: correlation-based MASEM, parameter-based MASEM, marginal likelihood synthesis, an adjustment to marginal likelihood…
Descriptors: Correlation, Comparative Analysis, Meta Analysis, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Seide, Svenja E.; Jensen, Katrin; Kieser, Meinhard – Research Synthesis Methods, 2020
The performance of statistical methods is often evaluated by means of simulation studies. In case of network meta-analysis of binary data, however, simulations are not currently available for many practically relevant settings. We perform a simulation study for sparse networks of trials under between-trial heterogeneity and including multi-arm…
Descriptors: Bayesian Statistics, Meta Analysis, Data Analysis, Networks
Peer reviewed Peer reviewed
Direct linkDirect link
Karabatsos, George – Research Synthesis Methods, 2018
There is a growing concern that much of the published research literature is distorted by the pursuit of statistically significant results. In a seminal article, Ioannidis and Trikalinos (2007, "Clinical Trials") proposed an omnibus (I&T) test for significance chasing (SC) biases. This test compares the observed number of studies…
Descriptors: Nonparametric Statistics, Bayesian Statistics, Bias, Statistical Significance
Peer reviewed Peer reviewed
Direct linkDirect link
Lin, Lifeng; Chu, Haitao – Research Synthesis Methods, 2018
In medical sciences, a disease condition is typically associated with multiple risk and protective factors. Although many studies report results of multiple factors, nearly all meta-analyses separately synthesize the association between each factor and the disease condition of interest. The collected studies usually report different subsets of…
Descriptors: Bayesian Statistics, Multivariate Analysis, Meta Analysis, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Pedder, Hugo; Dias, Sofia; Bennetts, Margherita; Boucher, Martin; Welton, Nicky J. – Research Synthesis Methods, 2019
Background: Model-based meta-analysis (MBMA) is increasingly used to inform drug-development decisions by synthesising results from multiple studies to estimate treatment, dose-response, and time-course characteristics. Network meta-analysis (NMA) is used in Health Technology Appraisals for simultaneously comparing effects of multiple treatments,…
Descriptors: Meta Analysis, Guidelines, Drug Therapy, Decision Making
Peer reviewed Peer reviewed
Direct linkDirect link
Uhlmann, Lorenz; Jensen, Katrin; Kieser, Meinhard – Research Synthesis Methods, 2017
Network meta-analysis is becoming a common approach to combine direct and indirect comparisons of several treatment arms. In recent research, there have been various developments and extensions of the standard methodology. Simultaneously, cluster randomized trials are experiencing an increased popularity, especially in the field of health services…
Descriptors: Bayesian Statistics, Network Analysis, Meta Analysis, Randomized Controlled Trials
Peer reviewed Peer reviewed
Direct linkDirect link
Günhan, Burak Kürsad; Röver, Christian; Friede, Tim – Research Synthesis Methods, 2020
Meta-analyses of clinical trials targeting rare events face particular challenges when the data lack adequate numbers of events for all treatment arms. Especially when the number of studies is low, standard random-effects meta-analysis methods can lead to serious distortions because of such data sparsity. To overcome this, we suggest the use of…
Descriptors: Meta Analysis, Medical Research, Drug Therapy, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Leahy, Joy; Walsh, Cathal – Research Synthesis Methods, 2019
If IPD is available for some or all trials in a network meta-analysis (NMA), then incorporating this IPD into an NMA is routinely considered to be preferable. However, the situation often arises where a researcher has IPD for trials concerning a particular treatment (eg, from a sponsor) but none for other trials. Therefore, one can reweight the…
Descriptors: Comparative Analysis, Meta Analysis, Bayesian Statistics, Network Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Zhao, Hong; Hodges, James S.; Carlin, Bradley P. – Research Synthesis Methods, 2017
Network meta-analysis (NMA) combines direct and indirect evidence comparing more than 2 treatments. Inconsistency arises when these 2 information sources differ. Previous work focuses on inconsistency detection, but little has been done on how to proceed after identifying inconsistency. The key issue is whether inconsistency changes an NMA's…
Descriptors: Meta Analysis, Networks, Hierarchical Linear Modeling, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Xie, Xuanqian; Sinclair, Alison; Dendukuri, Nandini – Research Synthesis Methods, 2017
Background: "Streptococcus pneumoniae" (SP) pneumonia is often treated empirically as diagnosis is challenging because of the lack of a perfect test. Using BinaxNOW-SP, a urinary antigen test, as an add-on to standard cultures may not only increase diagnostic yield but also increase costs. Objective: To estimate the sensitivity and…
Descriptors: Accuracy, Cost Effectiveness, Medical Services, Diseases
Peer reviewed Peer reviewed
Direct linkDirect link
Freeman, Suzanne C.; Carpenter, James R. – Research Synthesis Methods, 2017
Network meta-analysis (NMA) combines direct and indirect evidence from trials to calculate and rank treatment estimates. While modelling approaches for continuous and binary outcomes are relatively well developed, less work has been done with time-to-event outcomes. Such outcomes are usually analysed using Cox proportional hazard (PH) models.…
Descriptors: Bayesian Statistics, Network Analysis, Meta Analysis, Data
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Mi-Ok; Wang, Xia; Liu, Chunyan; Dorris, Kathleen; Fouladi, Maryam; Song, Seongho – Research Synthesis Methods, 2017
Phase I trials aim to establish appropriate clinical and statistical parameters to guide future clinical trials. With individual trials typically underpowered, systematic reviews and meta-analysis are desired to assess the totality of evidence. A high percentage of zero or missing outcomes often complicate such efforts. We use a systematic review…
Descriptors: Meta Analysis, Synthesis, Literature Reviews, Pediatrics
Peer reviewed Peer reviewed
Direct linkDirect link
Curtin, François – Research Synthesis Methods, 2017
Meta-analysis can necessitate the combination of parallel and cross-over trial designs. Because of the differences in the trial designs and potential biases notably associated with the crossover trials, one often combines trials of the same designs only, which decreases the power of the meta-analysis. To combine results of clinical trials from…
Descriptors: Meta Analysis, Monte Carlo Methods, Least Squares Statistics, Medical Research
Pages: 1  |  2  |  3  |  4