NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Yamaguchi, Yusuke; Sakamoto, Wataru; Goto, Masashi; Staessen, Jan A.; Wang, Jiguang; Gueyffier, Francois; Riley, Richard D. – Research Synthesis Methods, 2014
When some trials provide individual patient data (IPD) and the others provide only aggregate data (AD), meta-analysis methods for combining IPD and AD are required. We propose a method that reconstructs the missing IPD for AD trials by a Bayesian sampling procedure and then applies an IPD meta-analysis model to the mixture of simulated IPD and…
Descriptors: Meta Analysis, Patients, Bayesian Statistics, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Jackson, Dan – Research Synthesis Methods, 2013
Statistical inference is problematic in the common situation in meta-analysis where the random effects model is fitted to just a handful of studies. In particular, the asymptotic theory of maximum likelihood provides a poor approximation, and Bayesian methods are sensitive to the prior specification. Hence, less efficient, but easily computed and…
Descriptors: Computation, Statistical Analysis, Meta Analysis, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Verde, Pablo E.; Ohmann, Christian – Research Synthesis Methods, 2015
Researchers may have multiple motivations for combining disparate pieces of evidence in a meta-analysis, such as generalizing experimental results or increasing the power to detect an effect that a single study is not able to detect. However, while in meta-analysis, the main question may be simple, the structure of evidence available to answer it…
Descriptors: Randomized Controlled Trials, Bayesian Statistics, Comparative Analysis, Evidence