NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Remiro-Azócar, Antonio; Heath, Anna; Baio, Gianluca – Research Synthesis Methods, 2022
Population adjustment methods such as matching-adjusted indirect comparison (MAIC) are increasingly used to compare marginal treatment effects when there are cross-trial differences in effect modifiers and limited patient-level data. MAIC is based on propensity score weighting, which is sensitive to poor covariate overlap and cannot extrapolate…
Descriptors: Patients, Medical Research, Comparative Analysis, Outcomes of Treatment
Peer reviewed Peer reviewed
Direct linkDirect link
van Zundert, Camiel H. J.; Miocevic, Milica – Research Synthesis Methods, 2020
Synthesizing findings about the indirect (mediated) effect plays an important role in determining the mechanism through which variables affect one another. This simulation study compared six methods for synthesizing indirect effects: correlation-based MASEM, parameter-based MASEM, marginal likelihood synthesis, an adjustment to marginal likelihood…
Descriptors: Correlation, Comparative Analysis, Meta Analysis, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Pedder, Hugo; Dias, Sofia; Bennetts, Margherita; Boucher, Martin; Welton, Nicky J. – Research Synthesis Methods, 2019
Background: Model-based meta-analysis (MBMA) is increasingly used to inform drug-development decisions by synthesising results from multiple studies to estimate treatment, dose-response, and time-course characteristics. Network meta-analysis (NMA) is used in Health Technology Appraisals for simultaneously comparing effects of multiple treatments,…
Descriptors: Meta Analysis, Guidelines, Drug Therapy, Decision Making
Peer reviewed Peer reviewed
Direct linkDirect link
Hong, Hwanhee; Chu, Haitao; Zhang, Jing; Carlin, Bradley P. – Research Synthesis Methods, 2016
Bayesian statistical approaches to mixed treatment comparisons (MTCs) are becoming more popular because of their flexibility and interpretability. Many randomized clinical trials report multiple outcomes with possible inherent correlations. Moreover, MTC data are typically sparse (although richer than standard meta-analysis, comparing only two…
Descriptors: Bayesian Statistics, Meta Analysis, Outcomes of Treatment, Comparative Analysis