Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 11 |
| Since 2017 (last 10 years) | 26 |
| Since 2007 (last 20 years) | 36 |
Descriptor
| Bayesian Statistics | 36 |
| Meta Analysis | 34 |
| Comparative Analysis | 13 |
| Medical Research | 11 |
| Outcomes of Treatment | 10 |
| Simulation | 10 |
| Models | 9 |
| Correlation | 8 |
| Accuracy | 5 |
| Network Analysis | 5 |
| Patients | 5 |
| More ▼ | |
Source
| Research Synthesis Methods | 36 |
Author
Publication Type
| Journal Articles | 36 |
| Reports - Research | 36 |
| Information Analyses | 5 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Qi, Hongchao; Rizopoulos, Dimitris; Rosmalen, Joost – Research Synthesis Methods, 2022
The meta-analytic-predictive (MAP) approach is a Bayesian meta-analytic method to synthesize and incorporate information from historical controls in the analysis of a new trial. Classically, only a single parameter, typically the intercept or rate, is assumed to vary across studies, which may not be realistic in more complex models. Analysis of…
Descriptors: Meta Analysis, Prediction, Correlation, Bayesian Statistics
Suzanne C. Freeman; Alex J. Sutton; Nicola J. Cooper; Alessandro Gasparini; Michael J. Crowther; Neil Hawkins – Research Synthesis Methods, 2024
Background: Traditionally, meta-analysis of time-to-event outcomes reports a single pooled hazard ratio assuming proportional hazards (PH). For health technology assessment evaluations, hazard ratios are frequently extrapolated across a lifetime horizon. However, when treatment effects vary over time, an assumption of PH is not always valid. The…
Descriptors: Cancer, Medical Research, Bayesian Statistics, Meta Analysis
Bartoš, František; Maier, Maximilian; Wagenmakers, Eric-Jan; Doucouliagos, Hristos; Stanley, T. D. – Research Synthesis Methods, 2023
Publication bias is a ubiquitous threat to the validity of meta-analysis and the accumulation of scientific evidence. In order to estimate and counteract the impact of publication bias, multiple methods have been developed; however, recent simulation studies have shown the methods' performance to depend on the true data generating process, and no…
Descriptors: Robustness (Statistics), Bayesian Statistics, Meta Analysis, Publications
de Jong, Valentijn M. T.; Campbell, Harlan; Maxwell, Lauren; Jaenisch, Thomas; Gustafson, Paul; Debray, Thomas P. A. – Research Synthesis Methods, 2023
A common problem in the analysis of multiple data sources, including individual participant data meta-analysis (IPD-MA), is the misclassification of binary variables. Misclassification may lead to biased estimators of model parameters, even when the misclassification is entirely random. We aimed to develop statistical methods that facilitate…
Descriptors: Classification, Meta Analysis, Bayesian Statistics, Evaluation Methods
Jansen, Katrin; Holling, Heinz – Research Synthesis Methods, 2023
In meta-analyses of rare events, it can be challenging to obtain a reliable estimate of the pooled effect, in particular when the meta-analysis is based on a small number of studies. Recent simulation studies have shown that the beta-binomial model is a promising candidate in this situation, but have thus far only investigated its performance in a…
Descriptors: Bayesian Statistics, Meta Analysis, Probability, Simulation
Jennifer L. Proper; Haitao Chu; Purvi Prajapati; Michael D. Sonksen; Thomas A. Murray – Research Synthesis Methods, 2024
Drug repurposing refers to the process of discovering new therapeutic uses for existing medicines. Compared to traditional drug discovery, drug repurposing is attractive for its speed, cost, and reduced risk of failure. However, existing approaches for drug repurposing involve complex, computationally-intensive analytical methods that are not…
Descriptors: Network Analysis, Meta Analysis, Prediction, Drug Therapy
Kwon, Deukwoo; Reddy, Roopesh Reddy Sadashiva; Reis, Isildinha M. – Research Synthesis Methods, 2021
In meta-analysis based on continuous outcome, estimated means and corresponding standard deviations from the selected studies are key inputs to obtain a pooled estimate of the mean and its confidence interval. We often encounter the situation that these quantities are not directly reported in the literatures. Instead, other summary statistics are…
Descriptors: Meta Analysis, Computation, Bayesian Statistics, Computer Oriented Programs
Campbell, Harlan; de Jong, Valentijn M. T.; Maxwell, Lauren; Jaenisch, Thomas; Debray, Thomas P. A.; Gustafson, Paul – Research Synthesis Methods, 2021
Ideally, a meta-analysis will summarize data from several unbiased studies. Here we look into the less than ideal situation in which contributing studies may be compromised by non-differential measurement error in the exposure variable. Specifically, we consider a meta-analysis for the association between a continuous outcome variable and one or…
Descriptors: Error of Measurement, Meta Analysis, Bayesian Statistics, Statistical Analysis
Siegel, Lianne; Murad, M. Hassan; Chu, Haitao – Research Synthesis Methods, 2021
Often clinicians are interested in determining whether a subject's measurement falls within a normal range, defined as a range of values of a continuous outcome which contains some proportion (eg, 95%) of measurements from a healthy population. Several studies in the biomedical field have estimated reference ranges based on a meta-analysis of…
Descriptors: Meta Analysis, Medical Research, Biomedicine, Bayesian Statistics
Yao, Minghong; Wang, Yuning; Ren, Yan; Jia, Yulong; Zou, Kang; Li, Ling; Sun, Xin – Research Synthesis Methods, 2023
Rare events meta-analyses of randomized controlled trials (RCTs) are often underpowered because the outcomes are infrequent. Real-world evidence (RWE) from non-randomized studies may provide valuable complementary evidence about the effects of rare events, and there is growing interest in including such evidence in the decision-making process.…
Descriptors: Evidence, Meta Analysis, Randomized Controlled Trials, Decision Making
Cerullo, Enzo; Jones, Hayley E.; Carter, Olivia; Quinn, Terry J.; Cooper, Nicola J.; Sutton, Alex J. – Research Synthesis Methods, 2022
Standard methods for the meta-analysis of medical tests, without assuming a gold standard, are limited to dichotomous data. Multivariate probit models are used to analyse correlated dichotomous data, and can be extended to model ordinal data. Within the context of an imperfect gold standard, they have previously been used for the analysis of…
Descriptors: Meta Analysis, Test Format, Medicine, Standards
Weber, Frank; Knapp, Guido; Glass, Änne; Kundt, Günther; Ickstadt, Katja – Research Synthesis Methods, 2021
There exists a variety of interval estimators for the overall treatment effect in a random-effects meta-analysis. A recent literature review summarizing existing methods suggested that in most situations, the Hartung-Knapp/Sidik-Jonkman (HKSJ) method was preferable. However, a quantitative comparison of those methods in a common simulation study…
Descriptors: Meta Analysis, Computation, Intervals, Statistical Analysis
Remiro-Azócar, Antonio; Heath, Anna; Baio, Gianluca – Research Synthesis Methods, 2022
Population adjustment methods such as matching-adjusted indirect comparison (MAIC) are increasingly used to compare marginal treatment effects when there are cross-trial differences in effect modifiers and limited patient-level data. MAIC is based on propensity score weighting, which is sensitive to poor covariate overlap and cannot extrapolate…
Descriptors: Patients, Medical Research, Comparative Analysis, Outcomes of Treatment
Qi, Xinyue; Zhou, Shouhao; Wang, Yucai; Peterson, Christine – Research Synthesis Methods, 2022
Meta-analysis allows researchers to combine evidence from multiple studies, making it a powerful tool for synthesizing information on the safety profiles of new medical interventions. There is a critical need to identify subgroups at high risk of experiencing treatment-related toxicities. However, this remains quite challenging from a statistical…
Descriptors: Bayesian Statistics, Identification, Meta Analysis, Data Analysis
Albert, Isabelle; Makowski, David – Research Synthesis Methods, 2019
The mixed treatment comparison (MTC) method has been proposed to combine results across trials comparing several treatments. MTC allows coherent judgments on which of the treatments is the most effective. It produces estimates of the relative effects of each treatment compared with every other treatment by pooling direct and indirect evidence. In…
Descriptors: Research Methodology, Agriculture, Agricultural Production, Comparative Analysis

Peer reviewed
Direct link
