NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Rhemtulla, Mijke; Brosseau-Liard, Patricia E.; Savalei, Victoria – Psychological Methods, 2012
A simulation study compared the performance of robust normal theory maximum likelihood (ML) and robust categorical least squares (cat-LS) methodology for estimating confirmatory factor analysis models with ordinal variables. Data were generated from 2 models with 2-7 categories, 4 sample sizes, 2 latent distributions, and 5 patterns of category…
Descriptors: Factor Analysis, Computation, Simulation, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Maydeu-Olivares, Alberto; Coffman, Donna L.; Hartmann, Wolfgang M. – Psychological Methods, 2007
The point estimate of sample coefficient alpha may provide a misleading impression of the reliability of the test score. Because sample coefficient alpha is consistently biased downward, it is more likely to yield a misleading impression of poor reliability. The magnitude of the bias is greatest precisely when the variability of sample alpha is…
Descriptors: Intervals, Scores, Sample Size, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Long, Jeffrey D. – Psychological Methods, 2005
Often quantitative data in the social sciences have only ordinal justification. Problems of interpretation can arise when least squares multiple regression (LSMR) is used with ordinal data. Two ordinal alternatives are discussed, dominance-based ordinal multiple regression (DOMR) and proportional odds multiple regression. The Q[superscript 2]…
Descriptors: Simulation, Social Science Research, Error of Measurement, Least Squares Statistics