NotesFAQContact Us
Collection
Advanced
Search Tips
Source
Physics Teacher252
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 91 to 105 of 252 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Waxman, Michael A. – Physics Teacher, 2010
Radiation pressure is an important topic within a standard physics course (see, in particular, Refs. 1 and 2). The physics of radiation pressure is described, the magnitude of it is derived, both for the case of a perfectly absorbing surface and of a perfect reflector, and various applications of this interesting effect are discussed, such as…
Descriptors: Discussion, Physics, Radiation, Discussion (Teaching Technique)
Peer reviewed Peer reviewed
Direct linkDirect link
Lederman, Eric – Physics Teacher, 2009
In "How to Solve It", accomplished mathematician and skilled communicator George Polya describes a four-step universal solving technique designed to help students develop mathematical problem-solving skills. By providing a glimpse at the grace with which experts solve problems, Polya provides definable methods that are not exclusive to…
Descriptors: Science Instruction, Physics, Mathematics, Undergraduate Study
Peer reviewed Peer reviewed
Direct linkDirect link
Kunkel, William; Harrington, Randal – Physics Teacher, 2010
Problems on the dynamics of changing mass systems often call for the more general form of Newton's second law Fnet = dp/dt. These problems usually involve situations where the mass of the system decreases, such as in rocket propulsion. In contrast, this experiment examines a system where the mass "increases" at a constant rate and the net force…
Descriptors: Introductory Courses, Models, Scientific Concepts, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Devlin, John F. – Physics Teacher, 2009
The Lorentz velocity addition formula for one-dimensional motion presents a number of problems for beginning students of special relativity. In this paper we suggest a simple rewrite of the formula that is easier for students to memorize and manipulate, and furthermore is more intuitive in understanding the correction necessary when adding…
Descriptors: Motion, Physics, Science Instruction, Scientific Principles
Peer reviewed Peer reviewed
Direct linkDirect link
Newburgh, Ronald – Physics Teacher, 2009
A problem addressed infrequently in beginning physics courses is that of a moving body with changing mass. Elementary texts often have footnotes referring to jet planes and rockets but rarely do they go further. This omission is understandable because calculations with variable mass generally require the tools of calculus. This paper presents a…
Descriptors: Student Participation, Physics, Calculus, Scientific Principles
Peer reviewed Peer reviewed
Direct linkDirect link
Thompson, Keith – Physics Teacher, 2009
This little problem arose because I was frustrated with the standard electromagnetism texts, which show the magnetic field due to a current-bearing wire outside the wire [proportional to] 1/r and inside [proportional to] r. However, they never point out that the moving electrons must be influenced by the magnetic field created by the other moving…
Descriptors: Energy, Physics, Science Instruction, Magnets
Peer reviewed Peer reviewed
Direct linkDirect link
Fullerton, Dan; Bonner, David – Physics Teacher, 2011
Building students' ability to transfer physics fundamentals to real-world applications establishes a deeper understanding of underlying concepts while enhancing student interest. Forensic science offers a great opportunity for students to apply physics to highly engaging, real-world contexts. Integrating these opportunities into inquiry-based…
Descriptors: Learner Engagement, Crime, Student Interests, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Hayes, Kate; Wittmann, Michael C. – Physics Teacher, 2010
Helping students set up equations is one of the major goals of teaching a course in physics that contains elements of problem solving. Students must take the stories we present, interpret them, and turn them into physics; from there, they must turn that physical, idealized story into mathematics. How they do so and what problems lie along the way…
Descriptors: Physics, Equations (Mathematics), Models, Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Trawick, Matthew L. – Physics Teacher, 2010
Physics teachers are most effective when their students are active learners who think and participate in every class. This extends beyond the classroom too: ideally, students would tackle challenging questions and exercises after every class--not just before the exam or the night before the weekly homework is due. Just-in-Time-Teaching was…
Descriptors: Feedback (Response), Homework, Grading, Internet
Peer reviewed Peer reviewed
Direct linkDirect link
Vick, Matthew – Physics Teacher, 2010
From MP3 players to cell phones to computer games, we're surrounded by a constant stream of ones and zeros. Do we really need to know how this technology works? While nobody can understand everything, digital technology is increasingly making our lives a collection of "black boxes" that we can use but have no idea how they work. Pursuing…
Descriptors: High Schools, Music, Technology Integration, Optics
Peer reviewed Peer reviewed
Direct linkDirect link
Desbien, Dwain M. – Physics Teacher, 2008
In this age of the microcomputer-based lab (MBL), students are quite accustomed to looking at graphs of position, velocity, and acceleration versus time. A number of textbooks argue convincingly that the slope of the velocity graph gives the acceleration, the area under the velocity graph yields the displacement, and the area under the…
Descriptors: Textbooks, Motion, Graphs, Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Eisenstein, Stan; Simpson, Jeff – Physics Teacher, 2008
The electrical design of the common hair dryer is based almost entirely on relatively simple principles learned in introductory physics classes. Just as biology students dissect a frog to see the principles of anatomy in action, physics students can "dissect" a hair dryer to see how principles of electricity are used in a real system. They can…
Descriptors: Physics, Energy, Scientific Principles, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Hubisz, John – Physics Teacher, 2009
Early in my career someone else reported that the best indicator of success in calculus-based physics (CBP) at our school was whether students had taken mathematics in a certain region of New Brunswick. I sat down with a very longtime mathematics teacher and asked him what he thought students should know in mathematics after high school to succeed…
Descriptors: High Schools, Mathematics Teachers, Calculus, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Jewett, John W., Jr. – Physics Teacher, 2008
Energy is a critical concept in physics problem-solving, but is often a major source of confusion for students if the presentation is not carefully crafted by the instructor or the textbook. A common approach to problems involving deformable or rotating systems that has been discussed in the literature is to employ the work-kinetic energy theorem…
Descriptors: Kinetics, Energy, Problem Solving, Motion
Peer reviewed Peer reviewed
Direct linkDirect link
Jewett, John W., Jr. – Physics Teacher, 2008
Energy is a critical concept in physics problem-solving but is often a major source of confusion for students if the presentation is not carefully crafted by the instructor or the textbook. The first article in this series discussed student confusion generated by traditional treatments of work. In any discussion of work, it is important to state…
Descriptors: Textbooks, Energy, Physics, Science Instruction
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  17