Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 0 |
| Since 2017 (last 10 years) | 1 |
| Since 2007 (last 20 years) | 5 |
Descriptor
Source
| Physics Teacher | 6 |
Author
Publication Type
| Journal Articles | 6 |
| Reports - Descriptive | 4 |
| Guides - Classroom - Teacher | 1 |
| Reports - Evaluative | 1 |
Audience
| Teachers | 2 |
| Practitioners | 1 |
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Medel-Esquivel, Ricardo; Gómez-Vargas, Isidro; García-Salcedo, Ricardo; Vázquez, J. Alberto – Physics Teacher, 2021
One of the main topics of elementary physics is the idea that every material is composed of "little particles that move around in perpetual motion, attracting each other when they are a little distance apart, but repelling upon being squeezed into one other." These particles could be atoms or molecules. Atoms are the smallest part into…
Descriptors: Secondary School Science, College Science, Scientific Concepts, Motion
Bochnícek, Zdenek – Physics Teacher, 2013
In this paper the mechanical properties of carbon nanotubes are discussed in connection with the possibility to use them for the construction of a space elevator. From the fundamental information about the structure of a carbon nanotube and the chemical bond between carbon atoms, Young's modulus and the ultimate tensile strength are…
Descriptors: Science Instruction, Physics, Scientific Principles, Mechanics (Physics)
Schaefer, Beth; Collett, Edward; Tabor-Morris, Anne; Croman, Joseph – Physics Teacher, 2011
Elementary school students learn that atoms are very, very small. Students are also taught that atoms (and molecules) are the fundamental constituents of the material world. Numerical values of their size are often given, but, nevertheless, it is difficult to imagine their size relative to one's everyday surroundings. In order for students to…
Descriptors: Elementary School Students, Physics, Nuclear Physics, Molecular Structure
Bohren, Craig F. – Physics Teacher, 2009
In "The Theory of Almost Everything", Robert Oerter asserts the following: "Take a beam of electrons that are all spinning in the same direction and fire it at, say, a brick. If you could keep this up for long enough, and if there were no other forces acting on the brick, the electrons would transfer their rotation to the brick, and it would begin…
Descriptors: Physics, Scientific Concepts, Molecular Structure, Science Instruction
Zable, Anthony C. – Physics Teacher, 2010
The concepts of Newtonian mechanics, fluids, and ideal gas law physics are often treated as separate and isolated topics in the typical introductory college-level physics course, especially in the laboratory setting. To bridge these subjects, a simple experiment was developed that utilizes computer-based data acquisition sensors and a digital gram…
Descriptors: Thermodynamics, Mechanics (Physics), Scientific Concepts, Science Experiments
Peer reviewedStauffer, Frederic R. – Physics Teacher, 1991
Calculates an approximation to Avagadro's number for one mole of water by assuming the mole to be in cubical form and then halving the cube three times, thereby doubling the surface area of the original cube. The calculations are derived from the work necessary to perform these divisions. Presents calculated values for several liquids. (MDH)
Descriptors: Chemistry, Computation, Estimation (Mathematics), High Schools

Direct link
